Cover-Bild Kommutative Algebra und Algebraische Geometrie
74,99
inkl. MwSt
  • Verlag: Springer Berlin
  • Genre: keine Angabe / keine Angabe
  • Seitenzahl: 537
  • Ersterscheinung: 08.07.2019
  • ISBN: 9783662594810
Jürgen Böhm

Kommutative Algebra und Algebraische Geometrie

Dieses Buch ebnet dem Leser einen kleinschrittigen und somit gut begehbaren Weg in die algebraische Geometrie. Zentrale Begriffe und Ergebnisse aus kommutativer Algebra und algebraischer Geometrie werden vorgestellt und bilden eine solide Grundlage, um tiefer in die Materie einzusteigen und auch aktuelle Forschungsliteratur selbstständig zu verstehen. Auch wenn einige Beweise dem Leser überlassen bleiben, ist das Werk bestens zum Nachschlagen geeignet und die Darstellung weitgehend in sich abgeschlossen, externe Referenzen wurden auf ein Mindestmaß beschränkt.

Der Inhalt

Das Buch führt von Kategorientheorie, homologischer und kommutativer Algebra schließlich zur Schematheorie und Garbenkohomologie. Wegmarken, denen der Leser dabei begegnen wird, sind unter anderem: affine und projektive Schemata, Grundtypen von Morphismen, Faserprodukt, Dimensionstheorie, quasikohärente Garben, Varietäten, allgemeiner Satz von Bezout, Divisoren, Aufblasungen, Kähler-Differentiale, Čech-Kohomologie und Kohomologie der projektiven Räume, Ext-Garben, flache und glatte Morphismen, höhere direkte Bildgarben, Dualität und Halbstetigkeitssätze.

Der Leser sollte bereits grundlegende Kenntnisse aus der Algebra mitbringen, etwa zu Gruppen-, Körper- und Galoistheorie sowie Determinanten, Resultanten und elementaren Ergebnissen über Polynomringe. Ebenfalls notwendig ist eine gewisse Vertrautheit mit Begriffen der allgemeinen mengentheoretischen Topologie.

Weitere Formate

Dieses Produkt bei deinem lokalen Buchhändler bestellen

Meinungen aus der Lesejury

Es sind noch keine Einträge vorhanden.