Band 329
der Reihe "Berichte der Bundesanstalt für Strassenwesen - Verkehrstechnik (V)"
24,50
€
inkl. MwSt
- Verlag: Fachverlag NW in Carl Ed. Schünemann KG
- Genre: keine Angabe / keine Angabe
- Seitenzahl: 198
- Ersterscheinung: 24.06.2020
- ISBN: 9783956065095
Entwicklungen für eine streckenbezogene Glättevorhersage
V 329: Karl E. Schedler, Karl G. Gutbrod, Mathias Müller, Olav Schröder:
Entwicklungen für eine streckenbezogene Glättevorhersage
198 S., 146 Abb., 111 Tab., ISBN 978-3-95606-509-5, 2020 EUR 24,50
Durch den immer mehr zunehmenden Bedarf an Automatisierung und Optimierung des Winterdienstes und neuerdings auch im Hinblick auf autonomes Fahren steigen auch die Anforderungen an kleinräumige Vorhersagen des Straßenwetters, welche die streckenspezifischen Eigenschaften abbilden können. Im Projekt FE FE040279 „Streckenbezogene Glättevorhersage“ war die Aufgabe zu lösen, den derzeitigen Stand der Technik bezüglich Straßenwettervorhersagen darzustellen und die Frage zu klären, inwieweit Straßenzustandserfassung durch mobile Sensoren, zusammen mit stationären Straßenwetterstationen geeignet sind, die unterschiedlichen Streckeneigenschaften abzubilden und die Prognosen zu verbessern. Zu diesem Zweck wurden über zwei Winter (2015/16 und 2016/17) auf drei ausgesuchten Teststrecken (BAB A 4, BAB A 9, St2139) Methoden zur genaueren Vorhersage der winterbedingten Glätte für die einzelnen Abschnitte innerhalb eines zu bearbeitenden Straßennetzes untersucht. Dabei kam es hauptsächlich auf die Größen Fahrbahntemperatur, Wasserfilmdicke und Taupunkt temperatur an. Dafür wurden in einem 5-Schritte-Prozess (1) Wettermodelle, (2) Punktprognosen, (3) Fahrbahnzustands- Prognosen, (4) Streckenprognosen und (5) zeitliche Variabilität (Verläufe) verglichen und neue Konzepte getestet. Die Strecken A 9 (ca. 50 km, 380-520 m ü. NN) und St2139 (ca. 15 km , 480-901 m ü. NN) haben für meteorologischen Verhältnisse, abwechslungsreiche Topografie- und Geländeeigenschaften. Zur Charakterisierung sind sie mit drei bzw. einer Wetterstation ausgestattet und es wurden von den Lkw der AM Greding und der SM Viechtach, welche mit mobiler Sensorik (MARWIS v. Fa. Lufft) bestückt worden sind, in den beiden Winterhalbjahren fast täglich und insgesamt mehrere hundertmal im normalen Betriebsablauf befahren. Erfasst wurden dabei Taupunkt und Fahrbahntemperatur, Wasserfilmdicke und Eisprozent, sowie Straßenzustand. Mit speziell ausgerüsteten Fahrzeugen des Auftragnehmers und der BASt (IceCar) wurde auf allen drei Teststrecken eine sogenannte erweiterte Thermalkartierung (Thermal mapping) mit zusätzlich Taupunkt- und Bilanzstrahlungsmessung zur Charakterisierung der Strahlungsbedingungen der Strecke bei standardisierten Wetterbedingungen aufgenommen. Die Messungen zeigten eine hohe Variabilität auf den Strecken, die innerhalb einer Fahrt bei Temperatur bis zu 17 °C und bei Wasserfilmdicke bis über 2.000 µm erreicht. Diese Variabilität korreliert wenig mit den Messungen an den Sta
tionen und wird von keinem Prognose-Anbieter sehr gut erfasst. Die bei den Recherchen zum Stand der Technik gefundenen Dienste-Anbietern, speziell von Straßenwettervorhersagen haben sich, neben den projektbeteiligten Wetterdiensten DWD und meteoblue, drei weitere private Wetterdienstleister bereit erklärt, über die gesamte Projektlaufzeit online Vorhersagedaten für die Teststrecken zu liefern, welche ausgewertet und validiert worden sind. Die Prognosen erreichten für Stationen im besten Falle einen MAE (mittl. abs. Fehler – siehe Glossar) von
±2.3 °C und verglichen mit mobilen Messungen auf der Strecke einen MAE von ±2.1 °C. Für die Wasserfilmdicke werden im Schnitt bestenfalls ±180 µm erreicht. Die stationären und mobilen Messdaten wurden ausführlich zur Plausibilisierung und Beurteilung der Messunsicherheiten ausgewertet. Außerdem wurde untersucht, wie anhand der zahlreich erfassten Daten sich statistische Modelle finden lassen, welche die spezifischen Streckeneigenschaften mit möglichst geringen Fehlern wiedergeben können. Dabei kann gezeigt werden, dass durch die im normalen betrieblichen Ablauf zu unterschiedlichsten Wetterbedingungen erfassten mobilen Messdaten eine deutlich bessere Bild der Streckeneigenschaften erreichen lässt, als dies beispielsweise durch eine einfache Thermalkartierungen möglich ist. Anhand der mobilen Streckenmessungen wurden durch Klassifizierung nach Wetterlagen Standardprofile der Temperatur erstellt, die es erlauben, den Pro - g nose-Fehler für Temperatur von ±2.1 °C auf ±1.9 °C, und mithilfe von Nowcasting auf ±0.6 °C zu senken. Eine Prognose für die nächsten 12 Stunden dürfte mithilfe dieser Methoden einen Fehler (MAE) von ±1.2 °C erreichen können. Bei den Wasserfilmdicken werden mit mobilen Streckenmessungen und Klassifizierung nach Niederschlagsmenge Standardprofile der Wasserfilmdicke erstellt, die es erlauben, den Prognose-Fehler für Wasserfilmdicke von ±190 µm auf ±90 µm und mithilfe von Nowcasting auf unter ±50 µm zu senken. Eine Prognose für die nächsten 12 Stunden dürfte mithilfe dieser Methoden einen Fehler von unter ±100 µm erreichen können. Die Methoden wurden mithilfe der Daten von 2015/16 entwickelt und anhand der Fahrten von 2016/17 geprüft, sodass eine Anwendung auf unabhängige Fahrten und andere Strecken gesichert ist. Sie erfordert die Erstellung von regelmäßigen mobilen Messprofilen, die zu Standard-Profilen klassifiziert werden. Anhand der Erfahrungen von zwei Wintern dürfte ein Training des Modells innerhalb von einer Wintersaison machbar sein, während der es schon zu Verbesserungen der Streckenvorhersagen kommen könnte. Die neuen Methoden stellen eine signifikante Verbesserung des Stands der Technik dar und können mit geeigneten Maßnahmen binnen weniger Monate in die Praxis eingeführt werden.
Entwicklungen für eine streckenbezogene Glättevorhersage
198 S., 146 Abb., 111 Tab., ISBN 978-3-95606-509-5, 2020 EUR 24,50
Durch den immer mehr zunehmenden Bedarf an Automatisierung und Optimierung des Winterdienstes und neuerdings auch im Hinblick auf autonomes Fahren steigen auch die Anforderungen an kleinräumige Vorhersagen des Straßenwetters, welche die streckenspezifischen Eigenschaften abbilden können. Im Projekt FE FE040279 „Streckenbezogene Glättevorhersage“ war die Aufgabe zu lösen, den derzeitigen Stand der Technik bezüglich Straßenwettervorhersagen darzustellen und die Frage zu klären, inwieweit Straßenzustandserfassung durch mobile Sensoren, zusammen mit stationären Straßenwetterstationen geeignet sind, die unterschiedlichen Streckeneigenschaften abzubilden und die Prognosen zu verbessern. Zu diesem Zweck wurden über zwei Winter (2015/16 und 2016/17) auf drei ausgesuchten Teststrecken (BAB A 4, BAB A 9, St2139) Methoden zur genaueren Vorhersage der winterbedingten Glätte für die einzelnen Abschnitte innerhalb eines zu bearbeitenden Straßennetzes untersucht. Dabei kam es hauptsächlich auf die Größen Fahrbahntemperatur, Wasserfilmdicke und Taupunkt temperatur an. Dafür wurden in einem 5-Schritte-Prozess (1) Wettermodelle, (2) Punktprognosen, (3) Fahrbahnzustands- Prognosen, (4) Streckenprognosen und (5) zeitliche Variabilität (Verläufe) verglichen und neue Konzepte getestet. Die Strecken A 9 (ca. 50 km, 380-520 m ü. NN) und St2139 (ca. 15 km , 480-901 m ü. NN) haben für meteorologischen Verhältnisse, abwechslungsreiche Topografie- und Geländeeigenschaften. Zur Charakterisierung sind sie mit drei bzw. einer Wetterstation ausgestattet und es wurden von den Lkw der AM Greding und der SM Viechtach, welche mit mobiler Sensorik (MARWIS v. Fa. Lufft) bestückt worden sind, in den beiden Winterhalbjahren fast täglich und insgesamt mehrere hundertmal im normalen Betriebsablauf befahren. Erfasst wurden dabei Taupunkt und Fahrbahntemperatur, Wasserfilmdicke und Eisprozent, sowie Straßenzustand. Mit speziell ausgerüsteten Fahrzeugen des Auftragnehmers und der BASt (IceCar) wurde auf allen drei Teststrecken eine sogenannte erweiterte Thermalkartierung (Thermal mapping) mit zusätzlich Taupunkt- und Bilanzstrahlungsmessung zur Charakterisierung der Strahlungsbedingungen der Strecke bei standardisierten Wetterbedingungen aufgenommen. Die Messungen zeigten eine hohe Variabilität auf den Strecken, die innerhalb einer Fahrt bei Temperatur bis zu 17 °C und bei Wasserfilmdicke bis über 2.000 µm erreicht. Diese Variabilität korreliert wenig mit den Messungen an den Sta
tionen und wird von keinem Prognose-Anbieter sehr gut erfasst. Die bei den Recherchen zum Stand der Technik gefundenen Dienste-Anbietern, speziell von Straßenwettervorhersagen haben sich, neben den projektbeteiligten Wetterdiensten DWD und meteoblue, drei weitere private Wetterdienstleister bereit erklärt, über die gesamte Projektlaufzeit online Vorhersagedaten für die Teststrecken zu liefern, welche ausgewertet und validiert worden sind. Die Prognosen erreichten für Stationen im besten Falle einen MAE (mittl. abs. Fehler – siehe Glossar) von
±2.3 °C und verglichen mit mobilen Messungen auf der Strecke einen MAE von ±2.1 °C. Für die Wasserfilmdicke werden im Schnitt bestenfalls ±180 µm erreicht. Die stationären und mobilen Messdaten wurden ausführlich zur Plausibilisierung und Beurteilung der Messunsicherheiten ausgewertet. Außerdem wurde untersucht, wie anhand der zahlreich erfassten Daten sich statistische Modelle finden lassen, welche die spezifischen Streckeneigenschaften mit möglichst geringen Fehlern wiedergeben können. Dabei kann gezeigt werden, dass durch die im normalen betrieblichen Ablauf zu unterschiedlichsten Wetterbedingungen erfassten mobilen Messdaten eine deutlich bessere Bild der Streckeneigenschaften erreichen lässt, als dies beispielsweise durch eine einfache Thermalkartierungen möglich ist. Anhand der mobilen Streckenmessungen wurden durch Klassifizierung nach Wetterlagen Standardprofile der Temperatur erstellt, die es erlauben, den Pro - g nose-Fehler für Temperatur von ±2.1 °C auf ±1.9 °C, und mithilfe von Nowcasting auf ±0.6 °C zu senken. Eine Prognose für die nächsten 12 Stunden dürfte mithilfe dieser Methoden einen Fehler (MAE) von ±1.2 °C erreichen können. Bei den Wasserfilmdicken werden mit mobilen Streckenmessungen und Klassifizierung nach Niederschlagsmenge Standardprofile der Wasserfilmdicke erstellt, die es erlauben, den Prognose-Fehler für Wasserfilmdicke von ±190 µm auf ±90 µm und mithilfe von Nowcasting auf unter ±50 µm zu senken. Eine Prognose für die nächsten 12 Stunden dürfte mithilfe dieser Methoden einen Fehler von unter ±100 µm erreichen können. Die Methoden wurden mithilfe der Daten von 2015/16 entwickelt und anhand der Fahrten von 2016/17 geprüft, sodass eine Anwendung auf unabhängige Fahrten und andere Strecken gesichert ist. Sie erfordert die Erstellung von regelmäßigen mobilen Messprofilen, die zu Standard-Profilen klassifiziert werden. Anhand der Erfahrungen von zwei Wintern dürfte ein Training des Modells innerhalb von einer Wintersaison machbar sein, während der es schon zu Verbesserungen der Streckenvorhersagen kommen könnte. Die neuen Methoden stellen eine signifikante Verbesserung des Stands der Technik dar und können mit geeigneten Maßnahmen binnen weniger Monate in die Praxis eingeführt werden.
Meinungen aus der Lesejury
Es sind noch keine Einträge vorhanden.