Band
der Reihe "Schriftenreihe des PTW: "Innovation Fertigungstechnik""
58,80
€
inkl. MwSt
- Verlag: Shaker
- Genre: keine Angabe / keine Angabe
- Seitenzahl: 194
- Ersterscheinung: 09.10.2024
- ISBN: 9783844096514
Konfiguration von Traceability-Systemen für den Einsatz von Process Mining in der diskreten Fertigung
Diese Forschungsarbeit entwickelt einen End-to-End-Ansatz, der die gesamte Datenwertschöpfungskette von der Datenerzeugung bis zur Datennutzung in industriellen Prozessen betrachtet. Im Gegensatz zu herkömmlichen Ansätzen, die sich auf die Analyse bereits bestehender Daten konzentrieren, kombiniert dieser Ansatz Traceability-Systeme zur Datengenerierung und -erfassung mit Process Mining zur Datennutzung. Dadurch wird eine zielführende Kennzahlenbildung und Prozesstransparenz ermöglicht, die dem Produktionsmanagement objektive, datenbasierte Entscheidungen zur Prozessoptimierung und die Umsetzung eines kontinuierlichen Verbesserungsprozesses (KVP) erlaubt.
Process Mining analysiert sogenannte Event Logs, die prozessbasierte Daten beinhalten, um Geschäftsprozesse zu optimieren. Gerade bei der zunehmenden Nutzung im Produktionsbereich wird eine zielführende Datengenerierung häufig vernachlässigt, was zu unzureichenden Inputs und eingeschränkten Analyseergebnissen führt. Abhängig von der Konfiguration verbessern vorhandene Traceability-Systeme die Qualität und Verfügbarkeit prozessbasierter Daten für eine mögliche Process Mining-Analyse. Die Verknüpfung und das resultierende Potenzial der beiden Themenfelder Process Mining und Traceability zum KVP war bisher weitgehend unerforscht.
Im Rahmen des End-to-End-Ansatzes wird ein datenbasiertes Konfigurationsmodell entwickelt. Es ermöglicht Unternehmen, die Datenerfassung für die weit verbreiteten Traceability-Systeme so zu konfigurieren, dass sich benötigte Kennzahlen durch Process Mining-Analysen nachweislich generieren lassen. Der End-to-End-Ansatz wird in sechs Schritten operationalisiert und anschließend in zwei Praxisfällen erfolgreich angewendet. Die Ergebnisse liefern dem Produktionsmanagement wertvolle Kennzahlen und erhöhen die Prozesstransparenz. Damit wird zudem die Anwendbarkeit und Funktionalität des entwickelten End-to-End-Ansatzes nachgewiesen.
Process Mining analysiert sogenannte Event Logs, die prozessbasierte Daten beinhalten, um Geschäftsprozesse zu optimieren. Gerade bei der zunehmenden Nutzung im Produktionsbereich wird eine zielführende Datengenerierung häufig vernachlässigt, was zu unzureichenden Inputs und eingeschränkten Analyseergebnissen führt. Abhängig von der Konfiguration verbessern vorhandene Traceability-Systeme die Qualität und Verfügbarkeit prozessbasierter Daten für eine mögliche Process Mining-Analyse. Die Verknüpfung und das resultierende Potenzial der beiden Themenfelder Process Mining und Traceability zum KVP war bisher weitgehend unerforscht.
Im Rahmen des End-to-End-Ansatzes wird ein datenbasiertes Konfigurationsmodell entwickelt. Es ermöglicht Unternehmen, die Datenerfassung für die weit verbreiteten Traceability-Systeme so zu konfigurieren, dass sich benötigte Kennzahlen durch Process Mining-Analysen nachweislich generieren lassen. Der End-to-End-Ansatz wird in sechs Schritten operationalisiert und anschließend in zwei Praxisfällen erfolgreich angewendet. Die Ergebnisse liefern dem Produktionsmanagement wertvolle Kennzahlen und erhöhen die Prozesstransparenz. Damit wird zudem die Anwendbarkeit und Funktionalität des entwickelten End-to-End-Ansatzes nachgewiesen.
Meinungen aus der Lesejury
Es sind noch keine Einträge vorhanden.