
HANSER

Leseprobe

Jens Engel, Carsten Lauer

Einführung in die Boden- und Felsmechanik

Grundlagen und Berechnungen

ISBN (Buch): 978-3-446-45317-3

ISBN (E-Book): 978-3-446-45318-0

Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-45317-3 sowie im Buchhandel.

Vorwort

Zum Aufgabenbereich von Bauingenieuren und Architekten gehört auch die Planung von Gründungen, Baugruben und Geländesprüngen. Die Grundlagen dafür werden im Studium durch Fächer vermittelt, die häufig unter der Bezeichnung Geotechnik zusammengefasst werden. Das vorliegende Buch behandelt die Grundlagen der Bodenmechanik als Teil der Geotechnik, ergänzt um einige ingenieurgeologische und felsmechanische Aspekte, die bei der Bearbeitung von Bauvorhaben zu beachten sind. Der Schwerpunkt liegt dabei auf den Untersuchungsmethoden zur Feststellung der Eigenschaften von Boden und Fels und der Vorstellung der grundlegenden Berechnungsverfahren der Bodenmechanik.

Zur praktischen Übung des Stoffes wird die Planung einer Verkehrstrasse benutzt, die aus einer Brücke über einen Fluss und einem anschließenden Dammbauwerk auf weichem Untergrund besteht. Die in den einzelnen Kapiteln angeführten Übungsaufgaben beziehen sich auf dieses Lehrbeispiel. Aufgabenstellung und Lösungshinweise sind im Internet abrufbar unter:

http://www.zaft.htw-dresden.de/bodenmechanik

Das vorliegende Buch kann vorlesungsbegleitend und für das Selbststudium genutzt werden. Es soll Hilfs- und Arbeitsmittel für die Lösung der Aufgaben sein. In der vorliegenden Auflage sind deshalb einige Tabellen und Nomogramme überarbeitet und teilweise ergänzt worden.

Dies betrifft die Auswertung von Labor- und Feldversuchen und die grundlegenden bodenmechanischen Berechnungsverfahren, z. B. Erddruck-, Grundbruch-, Geländebruch- oder Setzungsberechnungen.

Neben der Vermittlung der Lehrinhalte der Bauingenieurausbildung sind auch Erfahrungen im Zusammenhang mit der Bearbeitung baupraktischer Projekte in begrenztem Umfang mit eingeflossen. Nicht alles konnte gleichermaßen detailliert dargestellt werden. Wir hoffen, dass das Buch ein Hilfsmittel für Studierende wie auch für im Beruf tätige Ingenieure sein kann. Hinweise zu Korrekturen oder Ergänzungen nehmen wir gern entgegen.

Dresden, Juni 2017 Jens Engel, Carsten Lauer

Inhalt

1	Einf	führung: Aufgaben und Ziele der Bodenmechanik						
	1.1	Entwu	urf eines Bauwerks – Rolle der Geotechnik im Bauingenieurwesen	13				
	1.2	Boder	n- und Felsmechanik als Teil des Bauingenieurwesens	15				
	1.3	Beispi	iel für ein Bauprojekt: Beschreibung	16				
2	Geo	logisc	he Grundlagen	19				
	2.1	Nutze	n geologischer Informationen für Bauprojekte	19				
	2.2	Allgen	neine geologische Grundlagen	21				
		2.2.1	Aufbau der Erde im Überblick	21				
		2.2.2	Geologische Zeitrechnung	23				
	2.3	Hydro	geologische Grundlagen	28				
		2.3.1	Kreislauf des Wassers, Bilanzgleichung	28				
		2.3.2	Wasser im Untergrund	29				
		2.3.3	Grundwasserleiter	30				
		2.3.4	Quellen	32				
	2.4	Minera	ale	32				
		2.4.1	Systematik der Minerale	33				
		2.4.2	Mineralbestimmung auf Grundlage physikalischer Eigenschaften	37				
		2.4.3	Gesteinsbildende Minerale	39				
	2.5	Geste	sine	39				
		2.5.1	Kreislauf der Gesteine	40				
		2.5.2	Gesteinsarten – Überblick	41				
			2.5.2.1 Magmatische Gesteine	41				
			2.5.2.2 Sedimentgesteine	42				
			2.5.2.3 Metamorphite	44				

3	Bau	grund	(Gebirge) 46					
	3.1	Fels		46				
		3.1.1	Gesteinsbestimmung	46				
			3.1.1.1 Struktur	46				
			3.1.1.2 Textur	47				
			3.1.1.3 Gesteinsbestimmung an Handstücken	47				
		3.1.2	Gestein-Fels-Gebirge	51				
		3.1.3	Benennung und Beschreibung von Fels	51				
			3.1.3.1 Benennung und Beschreibung des Gesteins	52				
			3.1.3.2 Verwitterungsgrad	54				
			3.1.3.3 Trennflächengefüge	54				
		3.1.4	Gebirgsklassifizierung mit dem Q -System (Quality-System)	56				
		3.1.5	Berechnung von Gebirgskennwerten, Gebirgsklassifizierung GSI	59				
	3.2	Böder	n (Lockergesteine)	62				
		3.2.1	Unterscheidungskriterien	62				
		3.2.2	Benennung und Beschreibung	64				
4	Erkı	undung	g und Untersuchung von Boden und Fels in situ	67				
	4.1	Vorbe	reitung, Planung	67				
		4.1.1	Grundlagen – Aufgabenstellung	67				
		4.1.2	Planungshinweise, Informationsquellen	69				
		4.1.3 Geologische Karten						
	4.2	Baugr	runderkundung	72				
		4.2.1	Geotechnische Kategorien	73				
		4.2.2	Umfang der Erkundung	74				
		4.2.3	Erkundungsarten	78				
			4.2.3.1 Direkte Aufschlüsse, Probenahme	78				
			4.2.3.2 Indirekte Verfahren: Sondierungen	83				

5	Ken	nwerte	werte von Boden und Fels 87						
	5.1	Klassi	ssifikationskennwerte						
		5.1.1	Stoffbestand	87					
			5.1.1.1 Phasenzusammensetzung	87					
			5.1.1.2 Beimengungen	93					
			5.1.1.3 Korngrößenverteilung	94					
		5.1.2	Stoffzustand: Grenzwerte des Stoffbestands	97					
			5.1.2.1 Konsistenzgrenzen bindiger Böden	98					
			5.1.2.2 Grenzen der Lagerungsdichte	102					
		5.1.3	Klassifizierung – Bodengruppen nach DIN 18196	103					
	5.2	Gütek	ontrolle im Erdbau, Verdichtung	105					
		5.2.1	Proctorkennwerte	105					
		5.2.2	Verdichtungskontrolle	106					
	5.3	Mecha	anische und hydraulische Größen	110					
		5.3.1	Strömung	110					
		5.3.2	Spannungen und Kräfte	111					
			5.3.2.1 Mohrscher Kreis	111					
			5.3.2.2 Wirksame Spannung	112					
			5.3.2.3 Eigengewicht des Bodens	114					
		5.3.3	Verformungsmaße	115					
	5.4	Durch	lässigkeit	116					
		5.4.1	Grundlagen	116					
		5.4.2 Experimentelle Bestimmung des Durchlässigkeitsbeiwerts							
	5.5	Scher	festigkeit	122					
		5.5.1	Grundlagen	122					
			5.5.1.1 Bruchbedingung	122					
			5.5.1.2 Einflüsse auf φ und c	125					
		5.5.2 Experimentelle Ermittlung							

			5.5.2.1 Direktscherversuch	8		
			5.5.2.2 Einaxiale Druckfestigkeit	9		
	5.5.2.3 Triaxialversuch					
	5.6	Zusan	nmendrückbarkeit	2		
		5.6.1	Grundlagen	2		
		5.6.2	Druck-Setzungs-Linie: Kennwertansätze	3		
		5.6.3	Zeit-Zusammendrückungs-Verhalten	7		
		5.6.4	Experimentelle Bestimmung – Ödometerversuch	2		
		5.6.5	Plattendruckversuch	3		
	5.7	Klassi	fizierungskriterien	4		
		5.7.1	Homogenbereiche zur Leistungsbeschreibung	5		
		5.7.2	Frostempfindlichkeit	6		
	5.8	Mittler	re Kennwerte, Korrelationen	0		
		5.8.1	Näherungen für nichtbindige Böden	0		
		5.8.2	Bindige Böden	1		
6	Strö	muna	und Transport 159	9		
•	6.1	•	ungskraft			
	6.2		reibung von Strömungsfeldern			
	6.3		tabilität			
	0.0			_		
7	Trag	gfähigk	eit 165	5		
	7.1	Grund	llagen	5		
		7.1.1	Grenzzustand der Tragfähigkeit in der Boden- und Felsmechanik	5		
		7.1.2	Idealisierung von Phänomenen	5		
		7.1.3	Kritisches Hauptspannungsverhältnis – Grenzzustände	6		
	7.2	Erddru	uck	8		
		7.2.1	Einführung	8		
			7.2.1.1 Arten des Erddrucks	8		

		7.2.1.2	Erddruckneigung	170	
	7.2.2	Grundla	gen der Berechnung	172	
		7.2.2.1	Verfahren mit Gleitflächen	172	
		7.2.2.2	Untersuchung des Spannungszustands	176	
	7.2.3	Aktiver E	Erddruck	177	
		7.2.3.1	Grafische Verfahren	178	
		7.2.3.2	Analytische Berechnung – Erddruckbeiwerte	179	
	7.2.4	Passive	r Erddruck	187	
		7.2.4.1	Grundlagen der Berechnung	187	
		7.2.4.2	Erdruckbeiwerte, ebener Fall	188	
		7.2.4.3	Räumlicher passiver Erddruck	193	
	7.2.5	Erdruhe	druck	193	
		7.2.5.1	Grundlagen	193	
		7.2.5.2	Erddruckbeiwert K_{0gh}	193	
		7.2.5.3	Vorbelastete Böden, Kohäsion	194	
	7.2.6	Zwische	nwerte, Sonderfälle des Erddrucks	194	
		7.2.6.1	Mobilisierung des passiven Erddrucks	194	
		7.2.6.2	Verdichtungserddruck	197	
		7.2.6.3	Sonderfall – Silodruck (begrenzte Hinterfüllung)	198	
7.3	Grund	bruch .		198	
	7.3.1	Einführu	ing	198	
	7.3.2	Ein einfa	acher Lösungsansatz	199	
	7.3.3	Allgeme	iner Berechnungsansatz	200	
		7.3.3.1	Anforderungen	200	
		7.3.3.2	Tragfähigkeitsbeiwerte, Grundbruchfigur	202	
		7.3.3.3	Nachweisführung	203	
7.4	Stand	sicherheit	von Böschungen, Geländebruch	208	
	7.4.1	.1 Grundlagen			

		7.4.2 Berechnungsgrundlagen bei Gleitrutschungen						
			7.4.2.1	Ebene Gleitfläche	210			
7.4.2.2 Kreisförmige Gleitfläche					212			
7.4.2.3 Lamellenfreie Kreisgleitfläche mit $c'>0$ und $\varphi'>0$					214			
7.4.2.4 Beliebige Gleitflächen					215			
		7.4.3	Berechn	ungsverfahren (Auswahl)	216			
			7.4.3.1	Lamellenverfahren mit Kreisgleitflächen	217			
			7.4.3.2	Starrkörperverfahren	218			
			7.4.3.3	Bemessungshilfen für einfache Fälle	219			
8 B	Bere	echnun	g von Ve	erformungen des Baugrunds	221			
8	.1	Spann	ungsausl	preitung im Baugrund	221			
		8.1.1 Grundlagen						
		8.1.2	Element	are Lösungen	222			
		8.1.3	Berechn	ung der Spannungsverteilung	225			
8	.2	Berech	nung voi	n Setzungen	231			
		8.2.1	Einführu	ng	231			
		8.2.2	Grundla	gen der rechnerischen Ermittlung	231			
		8.2.3	Ermittlur	ng der Setzungen auf Grundlage einer Druck-Setzungs-Kurve	234			
		8.2.4	Berechn	ung der Setzung und Schiefstellung starrer Fundamente	236			
8	.3	Bestim	nmung de	s Bettungsmoduls	239			
Liter	Literatur 241							
Inde	Index 24							

2 Geologische Grundlagen

2.1 Nutzen geologischer Informationen für Bauprojekte

Aus der geologisch-mineralogischen und der geohydraulischen Bewertung des Untersuchungsgebiets ergeben sich wichtige Schlussfolgerungen bezüglich der Eigenschaften des Untergrunds. Durch die Verbindung geologischer Grundlagen mit ingenieurtechnischen Überlegungen ist die Fachrichtung Ingenieurgeologie entstanden, die geologische, boden- und felsmechanische Methoden kombiniert. Es werden hier nur diejenigen ingenieurgeologischen Aspekte behandelt, die für die Tätigkeit des Bauingenieurs von Bedeutung sind. Dies betrifft vor allem das Verständnis der geologischen Begriffe und Beschreibungen, sowie die Erkundung des Untergrunds als Baugrund und als Baustoff.

Ziel der Tätigkeit des Bauingenieurs ist es, die Eigenschaften des Untergrunds soweit zu erkunden, dass eine wirtschaftliche und sichere Bemessung des Bauwerks möglich ist. Bevor zeit- und kostenintensive Untersuchungen veranlasst werden, müssen alle verfügbaren Informationen ausgewertet worden sein, die Hinweise auf die Eigenschaften des Baugrunds liefern können. Dazu gehört die Bewertung der topographischen, klimatischen und geologischen Bedingungen in der Umgebung der geplanten Baumaßnahme und besonders der Entstehungsgeschichte des Bodens. Grundkenntnisse über die Erdgeschichte, den Aufbau der Erde und die Zusammensetzung und Entstehung der Gesteine vermitteln die naturwissenschaftlichen Fachgebiete Geologie und Mineralogie.

Für die Beschaffung von Informationen über das Bauvorhaben und die örtlichen Gegebenheiten werden Karten, das Internet, Datensammlungen in Behörden, Institutionen oder anderen Einrichtungen und vor allem Ortsbesichtigungen genutzt. Beispiele für Hinweise, die berücksichtigt werden sollten:

- Verkehrswege zum Baufeld für Erkundung, Transporte oder andere Zwecke.
- Beschaffenheit des Geländes (Böschungsneigung, Bewuchs, Befahrbarkeit, Überflutung).
- Allgemeine Topographie (Geländeneigung).
- Hinweise zum Wasser im Baugrund (offene Gewässer, Brunnen, usw.)

Beispielprojekt

- Topographie: südlich der Dinalbe eben und flach, nördlich ansteigendes Gelände von 105 m auf ca. 140 m über NN
- Gewässer Fluss: südlich häufige Überflutungen, feinkörnige, meist weiche Sedimente, Flussauen feucht und sumpfig.
- Wasserstand: Grundwasser kommuniziert mit Wasserstand im Fluss.
- Hang nördlich: standfeste Böden, evtl. Festgestein unterhalb der Deckschicht.

• Überlieferte Hinweise auf Probleme (z. B. Straßennamen in Bergbaugebieten, Objektbezeichnungen "Alte Ziegelei", Bezeichnungen für Landschaften "Obermoor", "Heide", usw.).

Ein Ergebnis der ingenieurgeologischen Untersuchungen ist die Benennung und Beschreibung des Baugrunds. Dadurch ist es möglich, die Eigenschaften qualitativ abzuschätzen. In Verbindung mit boden- und felsmechanischen Untersuchungen und unter Berücksichtigung der Baumaßnahme erfolgt anschließend die zahlenmäßige Beschreibung der Baugrundeigenschaften als Teil der Tätigkeit des Bauingenieurs.

Bei der Standortwahl und der Planung der Erkundungsmaßnahmen für ein Bauwerk sind ingenieurgeologische Überlegungen unverzichtbar. Vor allem bei Projekten, bei denen mit Auswirkungen auf ausgedehnte Bereiche des Untergrunds zu rechnen ist, z.B. Talsperren, Tunnel, langen Einschnitten, Dammbauwerken oder Felsböschungen sollten Geologen in die Untersuchungen eingebunden werden.

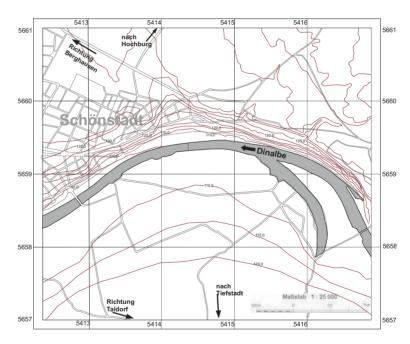


Bild 2.1: Kartenausschnitt des Gebiets um Schönstadt

2.2 Allgemeine geologische Grundlagen

2.2.1 Aufbau der Erde im Überblick

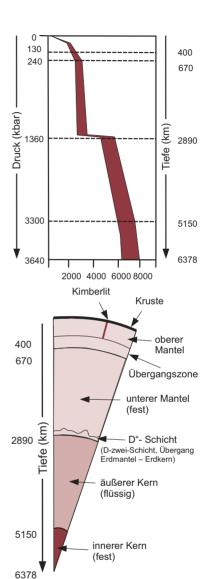

Die Erde ist geometrisch ein deformierter Rotationsellipsoid – ein birnenförmiger Geoid. Die Dichte ρ ist das Verhältnis von Masse und Volumen $\rho=\frac{m}{V}$. Eine nützliche Orientierung liefert die Dichte von Wasser, die im Mittel $\rho_w=1.0\,\mathrm{t/m^3}=1.0\,\mathrm{g/cm^3}$ beträgt. Für die Berechnung der Kräfte wird die Wichte γ benutzt, die als Quotient von Gewichtskraft und Volumen definiert ist. Sie berechnet sich als Produkt von Dichte ρ und Erdbeschleunigung $g=9.81\,\mathrm{m/s^2}$ zu $\gamma=\rho g$. Die mittlere Wichte von Wasser ist $\gamma_w=9.81\approx10.0\,\mathrm{kN/m^3}$ und die mittlere Wichte der Erde $\gamma=54.17\approx55.0\,\mathrm{kN/m^3}$.

Tabelle 2.1: Erreichte Endteufen einiger Tiefenbohrungen

Bohrung	Tiefe [m]	Verhältnis
		zum Erdradius [%]
Kola UdSSR 1970-1994	12262	0,192
(Forschungsbohrung)		
Oklahoma USA 1974	9583	0,150
(Erdgasbohrung)		
KTB Windischeschenbach	9101	0,142
BRD 1990-94 (Forschungsbohrung)		
Zistersdorf Österreich 1983	8553	0,134
(Erdgasbohrung)		
Mirow 1 DDR 1974	8009	0,125
(Erdölbohrung)		

Ungefähr 71 % der 510·10⁶ km² großen Erdoberfläche werden von Ozeanen bedeckt. Das Innere der Erde besteht aus Schalen unterschiedlicher Dichte. Mit der Tiefe nehmen Druck und Temperatur zu. Die geothermische Tiefenstufe ist die Tiefe, in der sich die Erdkruste um 1 °C erwärmt. Sie liegt im Mittel bei 33 m. Je nach regionaler Situation können erhebliche Abweichungen von diesem Mittelwert auftreten (z. B. Schwäbische Alb: 11 m, Südafrika: 90 m). Das mit ca. 12 km Endteufe tiefste Bohrloch der Welt befindet sich auf der Halbinsel Kola. Vulkane können Bruchstücke des Erdmantels immerhin aus 80-120 Kilometern Tiefe an die Erdoberfläche fördern. Einige Diamanten enthalten Einschlüsse, die in rund 700 Kilometern Tiefe entstanden sind.

Die Erkenntnisse zum Aufbau des Inneren der Erde resultieren daher nicht aus der direkten Inaugenscheinnahme, sondern aus geophysikalischen Untersuchungsverfahren, z. B. der Auswertung von Erdbe-

Bild 2.2: Schalenaufbau, Druck- und Temperaturverlauf im Inneren der Erde

Tabelle 2.2:	Finteilung	des	Frdkörners	in	Schalen
Tabelle 2.2.	LIIILEIIUIIU	ues	LIUNUIDEIS	ш	Schalen

Tiefe	Bezeichnung der Schicht	Dichte	Temperatur	Geschwindigkeit
unter GOF [km]		[g/cm ³]	[°C]	der p-Wellen [km/s]
10-30	Obere Kruste	2,7	<25-740	5,6-6,3
_	Conrad-Diskontinuität	-	_	_
6-50	Untere Kruste	3,0	-	6,4-7,4
_	Mohorovićić-Diskontinuität	-	-	_
400	Oberer Mantel	3,3	1400	8,0-8,3
900	Übergangszone	4,6	-	8,2-8,4
2900	Unterer Mantel	5,7	2500	8,0-8,3
_	Wiechert-Gutenberg-Diskontinuität	_	-	_
5100	Äußerer Kern	9,4	2500-3000	8,1-9,4
6370	Innerer Kern	11-13,5	3000-5000	11,3

Erde – Mittlere Kennwerte

Radius \approx 6378,26 km (Äquator)Volumen \approx 1,083 \cdot 10 12 km 3 Masse \approx 5,98 \cdot 10 21 tDichte ρ \approx 5.52 q/cm 3

Mittlere Kennziffern der Schalen

Erdkruste 0.4 % der Masse

 $\rho \approx 2.8 \text{ g/cm}^3$

Erdmantel 67,2 % der Masse

 $\rho \approx 4.5 \,\mathrm{g/cm^3}$

Erdkern 32.4 % der Masse

 $\rho \approx 11.0 \,\mathrm{g/cm^3}$

ben. Von einem Erdbebenherd gehen starke Wellen aus, die horizontal an der Erdoberfläche verlaufen, aber auch quer durch den Erdkörper dringen.

Durch die zeitliche Erfassung des Auftretens von Wellen an Messstationen lässt sich die Ausbreitungsgeschwindigkeit der Wellen berechnen. Diese ist abhängig von der Dichte des durchquerten Materials. Auch andere physikalische Phänomene, z.B. die elektrische Leitfähigkeit oder die Erdanziehung lassen sich für die Untersuchung der Eigenschaften des Untergrunds nutzen. Geophysikalische und bodendynamische Messverfahren zur Untersuchung des Bodens und zur Ermittlung von Kennwerten sind auf dieser Grundlage entwickelt worden (Geoelektrik, Geomagnetik, Gravimetrie, Geoseismik, Georadar, usw.).

Durch die Messung der Wellenausbreitung bei Erdbeben sind mehrere sprunghafte Änderungen der Dichte nachgewiesen worden, die auf den schalenförmigen Aufbau der Erde schließen lassen. Man unterscheidet dabei Longitudinalwellen , auch P-Wellen (Primärwellen) oder Kompressionswellen genannt – und S-Wellen (Schwerwellen). Die P-Welle schwingen in Ausbreitungsrichtung und können sich in festen, flüssigen und gasförmigen Materialien ausbreiten. Dagegen schwingen S-Wellen quer zur Ausbreitungsrichtung (Transversalwelle). Sie können sich nicht in Flüssigkeiten oder Gasen ausbreiten, da diese einer Scherverformung keinen Widerstand entgegensetzen.

Die Erdkruste umfasst die Zone von der Erdoberfläche bis zur Mohorovićić-Diskontinuität. Man unterscheidet zwischen kontinentaler Kruste mit 30-60 km Dicke und der ozeanischen Kruste unter den Ozeanen mit einer Dicke von nur 5-7 km. Unter der Erdkruste befindet sich der

obere Erdmantel, der sich bis ca. 400 km Tiefe erstreckt. Die Lithosphäre bezeichnet den Bereich von der Erdkruste einschließlich des oberen Mantels. Der Erdkern gliedert sich in einen flüssigen äußeren Kern und in einen wahrscheinlich festen inneren Kern. Die Abgrenzung zwischen den Schalen wird von Diskontinuitäten gebildet, die durch deutliche Sprünge der Laufzeitkurven der Erdbebenwellen zu erkennen sind. Je härter und schwerer ein Gestein ist, um so höher ist die Ausbreitungsgeschwindigkeit der Wellen.

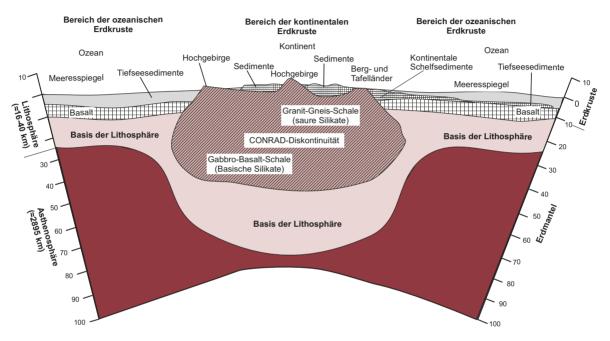


Bild 2.3: Aufbau und Mächtigkeit der Lithosphäre unter den Kontinenten und Ozeanen

2.2.2 Geologische Zeitrechnung

Die geologische Zeitrechnung beginnt mit der Bildung und Erstarrung der Erdkruste vor ca. 4,8 Milliarden Jahren. Ältere Schichten werden normalerweise von jüngeren Schichten überlagert. Durch die Überlagerung wird der Boden zusammengedrückt und verdichtet.

Seine Festigkeit nimmt dadurch zu. Wird ein Bauwerk in jungen, nicht vorbelasteten Schichten gegründet, ist mit größeren Verformungen und geringerer Festigkeit zu rechnen. Umgekehrt lässt sich aus dem Alter und der Entstehung einer Schicht erkennen, ob diese früher einmal von einer anderen Schicht überlagert worden ist. Auf Grundlage der Überle-

Systematik der Zeitangaben

- Äonen: sehr langer geologischer Zeitraum > 500 Mio. Jahre (4 Äonen: Phanerozoikum, Proterozoikum, Archaikum, Hadaikum)
- Ära, Zeitalter: Erdzeitalter > 100 Mio. Jahre (z. B. Phanerozoikum – Zeitalter: Känozoikum, Mesozoikum, Paläozoikum)

Systematik der Zeitangaben

- Periode, Formation: < 100 Mio. Jahre (z. B. Phanerozoikum/Känozoikum

 Formation: Quartär, Neogen (früher Tertiär), Paläogen)
- Epoche, Abteilung: 10 Mio.
 Jahre (z. B. Phanerozoikum/Känozoikum/Quartär – Epoche: Holozän. Pleistozän).

Kurzcharakteristik der Zeitalter (Ären) Känozoikum

(Erdneuzeit: 65 Mio. Jahre bis heute)

Tertiär, Quartär

Flora Blütenpflanzen,

Nadelhölzer

Fauna Säugetiere

(Raubtiere, Huftiere,

Primaten)

Klima Schwankungen
Entwicklung und Differenzierung der

Menschheit

Mesozoikum

(Erdmittelalter: 251 bis 65 Mio. Jahre)

Trias, Jura, Kreide

Fauna Reptilien, Riesensaurier,

Säugetiere

Paläozoikum

(Erdaltertum: 542 bis 251 Mio. Jahre) Kambrium, Ordovizium, Silur, Devon,

Karbon, Perm

Flora üppiger Pflanzenwuchs
Fauna Reptilien (Saurier)

Präkambrium

(Erdur- und Erdfrühzeit: 3800-542 Mio. Jahre)

Entstehung der Erde abgeschlossen

Flora Beginn Photosynthese,

Algen, Bakterien

Fauna niedere Wirbellose

gung, dass ältere Schichten immer von jüngeren überlagert werden, erfolgt in der Geologie die Bestimmung des relativen Alters (Lagerungsgesetz von Steno). Die Bestimmung des relativen Alters beruht auf der Verwendung von Zeitmarken, z. B. Gebirgsbildungen oder Leitfossilien. Die Lebewesen haben sich immer einsinnig gerichtet verändert. Der biologische Entwicklungsprozess ist nicht umkehrbar oder wiederholbar. Auf dieser Grundlage kann das relative Alter von Gesteinsschichten durch Fossilien bestimmt werden. Leitfossilien sind Lebensformen, die nur eine kurze Zeit existierten und weit verbreitet waren. Auch petrologische (gesteinskundliche) Merkmale, z. B. Aschen-Lagen aus großen Vulkanausbrüchen, können zur relativen Altersbestimmung benutzt werden.

Die Methoden zur Bestimmung des absoluten Alters von Schichten beruhen auf naturwissenschaftlichen Überlegungen. Zur Altersbestimmung kann die jahreszeitliche Abfolge der Ablagerungsprozesse, ähnlich den Jahresringen von Bäumen, genutzt werden, z. B. bei Bändertonen, bei denen sich helle, sandige Sommerlagen mit dunklen, tonigen Winterlagen abwechseln. Die radiometrische Altersbestimmung gehört zu den physikalischen Verfahren. Das Alter wird aufgrund der Beobachtung des Zerfalls radioaktiver Elemente ermittelt.

Im 19. und 20. Jahrhundert ist eine geologische Zeitskala entwickelt worden, deren Abschnitte sich auf die Abfolge von Gesteinen und Fossilien beziehen. Die Unterteilung der Zeitskala erfolgt nach Äonen, Zeitalter, Formationen und Epochen (siehe *Tabelle 2.4*). Eine Datierung ist nur als Größenordnung sinnvoll, wobei in größeren Abständen Anpassungen der Zuordnung von Begriffen zu Zeitspannen vorgenommen worden sind. So ist der Begriff "Tertiär" im Jahr 2000 aus der international gültigen und von der Internationalen Kommission für Stratigraphie herausgegebenen Geologischen Zeitskala gestrichen worden. Bei der Beurteilung des Baugrunds mithilfe historischer Unterlagen ist er nach wie vor gebräuchlich und wird deshalb hier ebenfalls noch benutzt.

Es ist üblich, für die erste Charakterisierung der Baugrundschichtung, die geologischen Bezeichnungen zu nutzen. Die Bestimmung des Zeitalters einer Schicht erfolgt auf Grundlage geologischer Überlegungen. Bei schwierigen Verhältnissen sollte ein Fachmann (Geologe) hinzugezogen werden. Für die Planung von Baumaßnahmen kann die richtige Interpretation dieser Informationen sehr nützlich sein.

Die Eiszeiten sind wichtige erdgeschichtliche Ereignisse der jüngeren Erdgeschichte. Sie haben das Landschaftsbild und die Ablagerungsbedingungen in einigen Regionen wesentlich geprägt. Während des Pleistozäns kam es zu einer großflächigen Vergletscherung von Nordeuropa, wobei das Eis unterschiedlich weit von Norden nach Süden vordrang. Gleichzeitig erfolgte eine Vergletscherung von den Alpen her nach Norden. Mittel- und Süddeutschland blieben eisfrei. Hier lagerten sich periglaziale Sedimente ab. Das letzte Rückzugsstadium der Verei-

sung begann ca. 15.000 bis 8.000 Jahre vor der Zeitrechnung. Seit dem hebt sich der skandinavische Schild unter der Entlastung kontinuierlich heraus. Die von den Gletschern transportierten Verwitterungsprodukte wurden ungeordnet in Moränen oder durch das Schmelzwasser sortiert abgelagert. Eiszeitliche Sedimente sind Lockergesteine wie Kiese, Sande, Geschiebemergel und Geschiebelehme.

Tabelle 2.3: Übersicht zur Zeitskala der Erdgeschichte

Beginn [Mio. a]	Ära/Zeitalter	Periode	Epoche	Ereignisse
0,0118	Känozoikum	Quartär	Holozän	Moderner Mensch (Homo sapiens)
1,8	(Neozoikum,	(Jungzeit)	Pleistozän	Neandertaler, Homo erectus
5,3	Erdneuzeit)	Tertiär	Pliozän	Vormenschen (z.B. Australopithecus)
23,03		(Neuzeit)	Miozän	Primaten (z.B. Pliopithecus)
33,9			Oligozän	Huftiere (z.B. Protoceras)
55,8			Eozän	Urhufer (z.B. Uintatherium)
65,5			Paläozän	Aussterben der Dinosaurier
144,5	Mesozoikum	Kreide		erste Blütenpflanzen (Angiospermen)
199,6	Mittelzeit	Jura		Dinosaurier, erste Vögel (z.B. Archaeopteryx)
251,1		Trias		erste Dinosaurier und Säugetiere
299	Paläozoikum	Perm		Reptlilien (z.B. Dimetrodon), Insektenordnungen
359,2	Altzeit	Karbon		Amphibien, erste Reptilien (z.B. Edaphosaurus)
416		Devon		Fische, erste Amphibien und Bäume
443,7		Silur		kieferlose Wirbeltiere; erste Landpflanzen
488,3		Ordovizium		erste Wirbeltiere, marine Algen
542		Kambrium		erste Tiere mit Hartteilen
1500	Präkambrium	Proterozoik	um	älteste Tiere (z.B. Würmer, Quallen, Algen)
3800	(Urzeit)	Archaikum		Sauerstoff, älteste Mikroorganismen
4570	Hadaikum			Formation des Planeten Erde

Die in der *Tabelle 2.3* dargestellten Zeitangaben basieren auf den Angaben der Internationalen Stratigraphischen Kommission ICS (http://www.stratigraphy.org/). Obwohl die Bezeichnungen "Tertiär" und "Quartär" abgeschafft und durch "Paläogen" bzw. "Neogen" ersetzt worden sind, werden sie hier benutzt, weil viele geologische Informationsquellen diese Begriffe enthalten.

Index

Abstandsgeschwindigkeit, 116	Merkmale in Verdingungsnormen, 14
Abteilung, 24	Bodengruppen, Klassifizierung, 103
Adsorptionswasser, 30	Bodenklassen, 145
äolisch, 42	Bodenmechanik, 15
Äonen, 23	Bohrkernindex, 56
Ära, 23	Bohrpunktkarte, 71
Anfangsstandsicherheit, 124	Borate, 35
Aquiclude, 29	
Aquifer	Carbonate, 35
artesischer, 28	Chromate, 35
gespannter, 28	Culmannverfahren, Erddruck, 178
leckender, 29	
schwebender, 29	Densitometer, 91
ungespannter, 28	Deviator, 112
Aquifuge, 29	Dichte, 91
Aräometer, 95	dichteste Lagerung, 102
Arbeitslinie, hyperbolischer Ansatz, 131	Dilatanz, 125
Arsenate, 35	Direktscherversuch, 128
Aufschlusstiefe, 75	Druckfestigkeit
Ausrollgrenze, 98	einaxiale des Bodens, 129
•	einaxiale Fels, 52
Böden	Fels, mittlere Werte, 49
Entstehung, 63	Drucksondierung, 84
Korngrößen, 62	Durchlässigkeit, 116
organischer Anteil, 63	Korrelation bindiger Boden, 156
Böschungsbruch	Korrelation nichtbindiger Bode, 151
ebene Gleitflächen, 212	Durchlässigkeit, horizontal, 116
Kreisgleitfläche, lamellenfrei, 214	Durchlässigkeitsversuch
Lamellenverfahren Kreisgleitfläche, 214	Feldbestimmung, 121
Lamellenverfahren, beliebige Gleitflächen,	konstante Druckhöhe, 119
215	veränderliche Druckhöhe, 120
Starrkörperverfahren, 218	
Ballongerät, 91	Edukt, 45
Barotropie, 125	Elemente, 33
Baugrunderkundung, 72	Endstandsicherheit, 124
Art und Umfang, 74	Entnahmekategorie, 82
Aufschlussarten, 78	Epoche, 24
Bettungsmodul	Erddruck
aus Plattendruckversuch, 144	Definition, 169
Fundamentbemessung, 239	Gleitflächenbetrachtung, 172
Boden/Bodeneigenschaften	Mobilisierung, 194
Klassifikation	Neigung, 170

Rankinescher Sonderfall, 177	geotechnische Kategorie, 73
Spannungsbetrachtung, 176	Gesamtscherfestigkeit, 127
Verdichtungserddruck, 197	Glühverlust, 94
Erddruck, aktiv	glazial, 42, 63
analytische Ermittlung, 179	Gradient, hydraulischer, 111
Berechnungsablauf analytisch, 183	Grenztiefe, 234
grafische Ermittlung, 178	Grundbruch
Erddruck, passiv	Durchstanzen, 208
kinematische Lösung, 187	Geländeneigung, 206
statische Lösung, 187	Grundbruchgleichung, 203
Erddruckbeiwert, 176	Lastneigung, 206
Erdradius, 21	Sohlneigung, 207
Erdruckbeiwerte	Grundwasser, 30
aktiv infolge Eigengewicht, 185	Grundwasserflurabstand, 29
aktiv infolge Eigengewicht, 103 aktiv infolge Kohäsion, 186	Grundwasserleiter, 28
-	
passiv infolge Auflast, 192	Grundwasserstockwerk, 29
passiv infolge Eigengewicht, 190	GSI Geological Strength Index, 59
passiv infolge Kohäsion, 191	Haffmanna 20
Erdruhedruck, 193	Haftwasser, 30
vorbelastete Böden, 194	Halogenide, 34
Erkundungstiefe, 75	Haptspannungsverhältnis
Erkundungsverfahren, 78	kritisches, 166
Ersatzverfahren, 91	Hauptuntersuchung, 74
	Hochwert, 70
Fallkegel, 100	Hungerquelle, 32
FDVK, 106	Hydroxide, 35
Fels	
Verwitterungsstufen, 54	Kalkgehalt, 93
Felsmechanik, 15	Kapillarwasser, 30
Filtergeschwindigkeit, 116	Karten, geologische, 71
Filterkriterium, 163	Kategorie der Entnahme, 82
Filterregel, 163	Kennwerte, mittlere, 149
Fläche, wirksame, 204	kennzeichnender Punkt, 225
Flächenbruch, 169	Klassifizierung, 103
Flügelsondierung, 84	Kleinrammbohrung, 79
Fließgrenze, 98	Kluft-GWL, 29
Fluidaltextur, 41	Kluftflächen, 54
fluviatil, 42, 63	Kluftrauigkeitszahl, 57
Formation, 24	Kluftsysteme, 57
freier GWL, 29	Kluftveränderungszahl, 57
Frostempfindlichkeit, 146	Kohäsion
,	Definition, 123
Güteklassen (Bodenproben), 82	Kohäsion, undränierte
Gauß-Krüger-Koordinaten, 70	Konsistenz, 152
Gebirgsklassifikation, 56	Korrelation, 153
Gefälle, hydraulisches, 111	Kompressionsbeiwert C_c , 137

Kompressionsversuch	Nitrate, 35
eindimensionaler, 142	
triaxialer, 130	Ödometerversuch, 142
Konsistenz, 152	Organische Verbindungen, 35
Konsistenzgrenzen, 98	organischer Boden, 63
Konsolidation, 137	Oxide, 35
Konsolidationsbeiwert c_v , 138	p-Welle, 22
Konsolidationssetzung, 139	palustrin, 42, 63
Korndichte, 93	Pastizitätszahl, 98
Korngrößenverteilung, 95	Periode, 24
Krümmungszahl C_c , 95	,
Kreisringscherversuch, 128	Phasenzusammensetzung, 87 Phosphate, 35
Kriechbeiwert	•
Korrelation, 156	Plattendruckversuch, 143
Kriechsetzung, 139	Poren-GWL, 29
kritischer Zustand, 124	Porenanteil n_f , durchflusswirksamer, 117
	porphyrisch, 41
Lösbarkeit, 145	Primärsetzung, 139
Laborflügelsonde, 100	Probenahme, 79
Lagerungsdichte, 102	Proctordichte
Lamellenverfahren	Erfahrungswerte, 158
beliebige Gleitflächen, 215	Proctorversuch, 105
Kreisgleitfläche, 214	Pykonotropie, 125
limnisch, 42	Pyroklastite, 42
lockerste Lagerung, 102	Q-System, 56
Longitudinalwelle, 22	Quality-System, 56
	Quellen, 231
Magma, 41	Quolion, 201
marin, 42	Rückstandsböden, 63
Metamorphite, 44	Rahmenscherversuch, 128
Metamorphose, 44	Rammkernsondierung, 79
Mineralklassen	Rammsondierung, 83
Borate, 35	Rankinescher Sonderfall, 177
Carbonate, 35	Rechtswert, 70
Elemente, 33	Referenzparameter, 134
Halogenide, 34	Reibungswinkel
Hydroxide, 35	Definition, 123
Nitrate, 35	Fels, mittlere Werte, 49
Organische Verbindungen, 35	Korrelation bindiger Boden, 153
Oxide, 35	Korrelation nichtbindiger Boden, 150
Phosphate, 35	spannungsabhängiger, 125
Silikate, 35	spannungsabhängiger, Näherung, 151
Sulfate, 35	Rekompressionsbeiwert C_{cr} , 137
Sulfide, 34	Restscherfestigkei, 125
Molybdate, 35	Restscherfestigkeit
Mudde, 64	Korrelationen, 153
•	,

RQD-Wert, 56	Spannungsreduktionsfaktor SRF , 57
	Stützmittelzahl, äquivalente, 58
Sackung, 231	Standsicherheitszahl, 219
Sackungsmaß, 231	starres Fundament, 225
Scherfestigkeit	Starrkörperverfahren, 218
Bruchkriterium, 123	Steifemodul
dichteabhängige, 125	Definition, 134
druckabhängige, 125	Idealisierung, 156
Erfahrungswerte, 126	Korrelationen, 156
Gesamtscherfestigkeit, 127	Steifemodulparameter $v, w, 136$
Mobilisierung, 124	Strömungskraft, 159
Mobilisierungfunktion, 131	Böschungen, 211
undränierte Bruchbedingung, 124	Herleitung, 159
Schergeschwindigkeit, 127	Strömungsnetz, 159
Schichtflächen, 54	Sulfate, 35
Schichtquelle, 32	Sulfide, 34
Schieferungsflächen, 54	
schlaffes Fundament, 225	Tagesbruch, 231
Schrumpfgrenze, 98	Taschenpenetrometer, 100
Schrumpfung, 231	Taylor-Diagramm, 219
Schuttquelle, 32	Tiefenstufe, geothermische, 21
Schwellbeiwert C_s , 137	Torf, 64
Schwellhebung, 231	Trennflächengefüge, 54
Sekundärsetzung, 139	Triaxialversuch
Selbstfiltrationsindex, 163	Arbeitslinie, 131
Senkung, 231	Versuchsaufbau, 129
Setzungsberechnung	
Korrekturbeiwerte κ , 233	Überlaufquelle, 32
Setzungseinflusswerte, 237	Ungleichförmigkeitszahl C_u , 95
Verdrehung, 236	UTM, 70
Sickerwasser, 30	Vanadata 25
Silikate, 35	Vanadate, 35 Veränderlichkeit Fels, 54
Silodruck, 198	
Sofortsetzung, 139	Verdichtungserddruck, 197 Verdichtungskontrolle, 106
Sohlspannungsverteilung, 224	
Sondierung	Anforderungen, 106 Eignungsprüfung, 107
Drucksondierung, 84	Prüfmethoden, 106
Rammsondierung, 83	
Spaltenquellen, 32	Prüfumfang, 108
Spannungen, 112	Verfestigungsgrad μ , 139 Verformungsmodul, initialer E_i , 132
Deviator, 112	•
wirksame, 113	Verwitterungsgrad, 54
Spannungseinflusswert, 224	Vorbelastung, Spannung, 135
Spannungseinflusswerte	Voruntersuchung, 74
schlaffes Rechteckfundament, 231	Vulkanite, 41
starres Rechteckfundament, 231	Wandreibungswinkel, 170
Starres recritectionalitetit, 201	validicibaligswilling, 170

Wassergehalt, 91 Webanwendungen Geologische Informationen, 71 Windablagerungen, 63 wirksame Fläche, 204 Wolframate, 35 Zähigkeitsindex, 128 Zugfestigkeit, Fels, 49 Zusammendrückbarkeit, 132