HANSER

Leseprobe

Wolfgang Kaiser

Kunststoffchemie für Ingenieure

Von der Synthese bis zur Anwendung

ISBN (Buch): 978-3-446-44638-0

ISBN (E-Book): 978-3-446-44774-5

Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-44638-0 sowie im Buchhandel.

Vorwort zur vierten Auflage

"Well, nobody's perfect!", tönt es zum Schluss im Kultfilm "Some like it hot" ("Manche mögen's heiß"). Ein kurzer Blick auf den Mittelteil im Impressum dieses Buches (Seite vis-à-vis) vergegenwärtigt, dass diese aufmunternden Worte auch im Bereich der Fachbücher – selbst für eine vierte Auflage – nicht fehl am Platz sind. Überdies erweist sich der Filmtitel "Manche mögen's heiß" auch als wichtiges Kriterium bei der Auswahl von Kunststoffen was ihre Temperaturbeständigkeit betrifft. Im speziellen gilt dies für Hochleistungskunststoffe. Allerdings kann hier der Vermerk: "doch nur mit Maß und Ziel" nicht schaden. Seit dem Erscheinen der ersten Auflage (Herbst 2005) sind ziemlich exakt zehn Jahre vergangen. Grund genug, dem zentralen Anspruch dieses Fachbuches auch in der vierten Auflage erneut gebührend Rechnung zu tragen: Aktualisierte Grundlagen praxisnah vermitteln. Selbstredend hätten diese anspruchsvollen und umfangreichen Anpassungen nicht im gleichen Maße aufs Neue vorgenommen werden können, wenn der Verfasser nur auf sich allein gestellt gewesen wäre.

Zuallererst gilt somit mein ganz besonderer Dank den Herren Prof. Dr. Paul Smith (ETH Zürich), Prof. Dr. Walter Caseri (ETH Zürich), Prof. Dr. Theo Tervoort (ETH Zürich), Prof. Dr. Erich Kramer (FH Nordwestschweiz), Dr. Peter Attenberger (Vinnolit), Dr. Harald Geisler (DIK Hannover), Dipl.-Ing. Georg Haberl (Vinnolit), Dr. Wilfried Haese (Bayer MaterialScience), Dr. Manfred Hewel (EMS Chemie), Dr. Oliver Jünger (Celanese), Dr. Klaus Kurz (Celanese), Dipl.-Ing. Eduard Maurer (Emaform), Dr. Martin Roth (ehemals Huntsman), Dr. Daniel Sandholzer (Borealis) und Dipl.-Ing. Michael Schäfer (Celanese). Sie alle haben mit viel Engagement, Zeit, Mühe und Sachverstand die einzelnen Kapitel kritisch durchgesehen und wo nötig Korrekturen und wertvolle Ergänzungen vorgenommen.

Ein weiterer Dank geht an zahlreiche Leser, darunter viele Kollegen von anderen Universitäten, Technischen Hochschulen oder Fachhochschulen sowie Studierende, die mich auf Schreibfehler oder sonstige Fehler hingewiesen und/oder Verbesserungsvorschläge gemacht haben. In gewohnt routinierter Weise aber auch mit viel Hingabe und Begeisterung wurde ich erneut von Herrn Dipl.-Ing. Stephan Tanner (bzb Buchs/SG) bei der elektronischen Aufbereitung von chemischen Formeln, Bildern (Zeichnungen) und Tabellen unterstützt.

Nicht zuletzt gebührt auch dieses Mal allen Mitarbeitenden des Carl Hanser Verlags, die an der Herstellung dieses Buches beteiligt waren, ein ganz großes Dankeschön, namentlich richtet sich dieser Dank an meine Lektorin Frau Ulrike Wittmann, Herrn Dr. Mark Smith und Herrn Jörg Strohbach.

Möge das Buch der/dem geneigten Leserin/Leser zum Lernen, Lehren, Nachschlagen sowie zur Materialwahl einmal mehr nützlich sein.

Zürich, im Herbst 2015

Wolfgang Kaiser

Inhalt

Vorwort zur vierten Auflage						
Pr	of. D	r. Phil. I	Wolfgan	g Kaiser	VII	
Hi	Hinweise zur Benutzung des Buches					
1	Einf	ührung			1	
	1.1	Werksto	offklassen		1	
	1.2	Bedeuti	ıng der K	unststoffe	3	
		1.2.1	Wachstu	ımsursachen	4	
			1.2.1.1	Die Petrochemie als Rohstofflieferant	4	
			1.2.1.2	Leichtgewicht Kunststoff	4	
			1.2.1.3	Energiegünstiges Verhalten	4	
			1.2.1.4	Komplexe Formteilgeometrien und hoher		
				Automatisierungsgrad	5	
			1.2.1.5	Nutzung von Synergien	5	
		1.2.2	Kunststo	offe und die Grundbedürfnisse des Menschen	6	
			1.2.2.1	Nahrung	6	
			1.2.2.2	Gesundheit	7	
			1.2.2.3	Kleidung	7	
			1.2.2.4	Wohnung	8	
			1.2.2.5	Kommunikation	8	
	1.3	Geschio	chte der Kunststoffe			
		1.3.1		Abriss der Entwicklung der Polymerwissenschaften Copolymere und Blends)	12	
	1.4	Zukunf	t der Kun	ststoffe – Prognosen	23	
		1.4.1	Zukünft	iger Pro Kopf-Verbrauch von Kunststoff-Werkstoffen .	24	
		1.4.2	Erwartu	ngen an Polymere	25	
		1.4.3	Zukünft	ige Rohstoffquellen	25	
	1.5	Wirtsch	aftsdaten	und Grafiken zu Kunststoffen	28	
		1.5.1		ng der Kunststoffe nach Bedarf wendungsgebieten	28	
		1.5.2		ng der Kunststoffe rem Eigenschaftsprofil	28	
2	Grui	ndlagen			33	
2.1 Was sind Kunststoffe					34	

XIV

	2.1.1	Einteilu	ng der Kunststoffe				
	2.1.2	Makron	nolekül-Architektur/Topologie				
2.2	Bildungsreaktionen für Makromoleküle – Polyreaktionen						
	2.2.1	Kettenpe	olymerisation 4				
		2.2.1.1	Radikalische Kettenpolymerisation 4				
		2.2.1.2	Kationische Kettenpolymerisation 4				
		2.2.1.3	Anionische Kettenpolymerisation 4				
		2.2.1.4	Koordinative Kettenpolymerisation/Polyinsertion 5				
		2.2.1.5	Homo- und Copolymerisate 5				
		2.2.1.6	Chemische Vernetzung durch Kettencopolymerisation				
		2.2.1.7	Verfahrenstechnik der Kettenpolymerisation 5				
		2.2.1.8	Plasmapolymerisation 5				
	2.2.2	Konden	sationspolymerisation (Polykondensation) 5				
	2.2.3	Addition	nspolymerisation (Polyaddition) 6				
	2.2.4		Verfahrenstechnik der Kondensationspolymerisation und Additionspolymerisation				
	2.2.5	Einteilu	ng nach dem Typ der Aufbaureaktionen 6				
	2.2.6	Chemiso	che Umsetzungen an Makromolekülen 6				
		2.2.6.1	Vergrößerung des Polymerisationsgrads 6				
		2.2.6.2	Beibehaltung des Polymerisationsgrads 6				
		2.2.6.3	Verringerung des Polymerisationsgrads 6				
		2.2.6.4	Chemische Umsetzungen an makromolekularen Naturstoffen				
2.3	Bindungskräfte in makromolekularen Systemen						
	2.3.1 Hauptvalenzbindungen						
	2.3.2	Nebenva	alenzbindungen				
	2.3.3	Ionenbi	ndungen				
	2.3.4	Mechanische Bindungen					
2.4	Struktu	rmerkma	le von Kunststoffen 7				
	2.4.1	Chemiso	Chemische Struktur 70				
		2.4.1.1	Konstitution				
		2.4.1.2	Konfiguration 8				
	2.4.2	Festkörp	perstruktur 8				
		2.4.2.1	Räumliche Anordnung eines Makromoleküls 8				
		2.4.2.2	Räumliche Anordnung mehrerer Makromoleküle zu einem Verband				
		2.4.2.3	Kristallinität				
	2.4.3	Mittlere	Molmasse \overline{M} und Molmassenverteilung				
		2.4.3.1	Kettenlänge 9				
		2.4.3.2	Molmasse M bei niedermolekularen Verbindungen				

		2.4.3.3	Mittlere Molmasse M und Molmassenverteilung bei hochmolekularen Verbindungen	91
		2.4.3.4	Mittlerer Polymerisationsgrad	93
		2.4.3.5	Beeinflussung von Eigenschaften durch die mittlere)3
		2.4.5.5	Molmasse	94
2.5	Modifiz	ierung vo	n Polymeren und Kunststoffen	95
	2.5.1	Chemiso	hes Modifizieren von Polymeren	95
		2.5.1.1	Steuerung von Synthesereaktionen	95
		2.5.1.2	Copolymerisation	96
		2.5.1.3	Andere chemische Modifikationen	96
	2.5.2		ische Modifizierung von Polymeren und offen	96
		2.5.2.1		96
			Polymergemische und Polymerblends	96
	2 5 2	2.5.2.2	Erhöhung der Ordnung in Polymeren	97
	2.5.3		eren mit Zusatzstoffen (Additive)	
		2.5.3.1	Füllstoffe	100
		2.5.3.2	Verstärkungsstoffe	101
		2.5.3.3	Weichmacher	102
		2.5.3.4	Treibmittel	102
		2.5.3.5	Farbmittel	102
		2.5.3.6	Stabilisatoren	103
		2.5.3.7	Flammhemmende Zusätze	104
		2.5.3.8	Weitere Additivgruppen	104
2.6			haften der Kunststoffe	106
	2.6.1		halten (Rheologie) von Kunststoff-Schmelzen	106
		2.6.1.1	Viskositätsfunktionen von Thermoplastschmelzen	108
		2.6.1.2	Zeitverhalten von thermisch instabilen Thermo- plast-Schmelzen und reagierenden Formmassen	110
	2.6.2	Thermis	ch-mechanisches Verhalten	112
		2.6.2.1	Thermoplaste	112
		2.6.2.2	Elastomere und Duroplaste	115
	2.6.3		mechanisches Verhalten	117
	2.6.4		n gegen Umwelteinflüsse	120
	2.0.1		Chemische Beständigkeit	120
2.7	Alterun		erungsschutz	123
2.7	2.7.1	_	g und Alterungsvorgänge	123
	2.7.1	2.7.1.1	Chemische Alterungsvorgänge	123
		2.7.1.2	Physikalische Alterungsvorgänge	126
	2.7.2		sschutz	126
2.8		_	ionen bei der Kunststoffverarbeitung	130
2.0	2.8.1		the Reaktionen im Aufgabenbereich des Verarbeiters	131

			2.8.1.1	Gezielte chemische Reaktionen während der Verarbeitung	131		
			2.8.1.2	Unerwünschte chemische Reaktionen während der Verarbeitung als Begleiterscheinung	131		
			2.8.1.3	Chemische Reaktionen außerhalb der Verarbeitung, jedoch vom Verarbeiter durch Zugabe von Hilfsmitteln beeinflussbar	131		
		2.8.2	Kunststo	offerzeugung beim Verarbeiter	132		
	2.9			bei der Schadenverhütung und Schadensanalyse eich	133		
		2.9.1	Thermo	analyse (TA) zur Schadenverhütung/Schadensanalyse	134		
			2.9.1.1	Differential-Kalorimetrie (Differenial Scanning-Calorimetry), DSC	135		
		2.9.2	Mikrosk	copische Gefügeanalyse an Bauteilen			
				lbzeug	138		
3	Tech	nologie	der Verar	beitung von Kunststoffen	141		
	3.1	Allgeme	eines		141		
	3.2	Begriffe	und Eint	teilung der Fertigungsverfahren nach DIN 8850	142		
	3.3	Prinzip	der wicht	tigsten Ver- und Bearbeitungsverfahren	143		
	3.4	Aufbereitung					
		3.4.1	Einteilu	ng der Aufbereitungsverfahren	145		
			3.4.1.1	Mischen	146		
			3.4.1.2	Granulieren	148		
			3.4.1.3	Zerkleinern	149		
			3.4.1.4	Vortrocknen	150		
	3.5	Urform	en		151		
		3.5.1	Extrudie	eren (Strangpressen)	152		
			3.5.1.1	Aufbau eines Extruders	153		
			3.5.1.2	Beispiele typischer Extrusionsanlagen	158		
		3.5.2	Blasforn	nen	162		
			3.5.2.1	Extrusionsblasformen	162		
			3.5.2.2	Extrusions-Streckblasformen	165		
			3.5.2.3	Spritzblasformen	166		
			3.5.2.4	Spritz-Streckblasformen	166		
		3.5.3	Spritzgie	eßen	167		
			3.5.3.1	Verfahrenstechnik beim Spritzgießen	167		
			3.5.3.2	Spritzgießmaschine	168		
			3.5.3.3	Einflussgrößen auf die Formteilqualität beim Spritzgießen	171		
			3.5.3.4	Sonderverfahren der Spritzgießtechnik	172		
			3.5.3.5	Spritzgießen von vernetzenden Polymeren	177		

Inhalt

3.5.4	Pressen,	Spritzpressen, Schichtpressen	177
	3.5.4.1	Pressen von Duroplasten	178
	3.5.4.2	Pressen von Thermoplasten	179
	3.5.4.3	Spritzpressen von Duroplasten	179
	3.5.4.4	Schichtpressen von Duroplasten	180
3.5.5	Kalandri	eren	180
	3.5.5.1	Bauarten des Kalanders	180
	3.5.5.2	Verfahrenstechnik beim Kalandrieren	181
3.5.6	Spinnver	rfahren	182
	3.5.6.1	Grundlagen des Spinnprozesses	183
	3.5.6.2	Herstellung von Chemiefasern	184
	3.5.6.3	Textile Definitionen	189
	3.5.6.4	Textile Flächengebilde	190
3.5.7	FVK-Ur	formen	191
	3.5.7.1	Prepregverarbeitung	192
	3.5.7.2	Faserspritzen	192
	3.5.7.3	Faserwickeln	193
	3.5.7.4	Pultrusion	193
	3.5.7.5	RTM-Verfahren	193
	3.5.7.6	Handlaminieren	195
3.5.8	Schäume	en	196
	3.5.8.1	Herstellung eines Schaumstoffes	197
	3.5.8.2	Einteilung der Schäumverfahren	198
	3.5.8.3	Polystyrol-Schaumstoffe	199
	3.5.8.4	Polyurethan-Schaumstoffe	201
3.5.9	Gießen		207
	3.5.9.1	Vakuumgießen	208
	3.5.9.2	Rotationsformen (Rotationsgießen)	210
	3.5.9.3	Schleuderverfahren (Schleudergießen)	211
	3.5.9.4	Filmgießen (Foliengießen)	211
	3.5.9.5	Einbetten, Imprägnieren, Tränken	212
3.5.10	Tauchfor	rmen	212
3.5.11	Additive	Fertigungsverfahren (Additive Manufacturing AM)	213
	3.5.11.1	Polymerisation als Basis für AM	214
	3.5.11.2	Selektives Lasersintern (SLS)	216
	3.5.11.3	Fused Layer Modeling (FLM)	216
	3.5.11.4		
		(LLM, auch LOM®)	216
	3.5.11.5	Aerosolprinting und Bioplotter	216

3.6	Umforn	nen		217			
	3.6.1		niede im Warmformbereich zwischen	215			
	2.62	_	en und teilkristallinen Thermoplasten	217			
	3.6.2		ng der Warmformverfahren für Thermoplaste	218			
		3.6.2.1	Biegeumformen	218			
		3.6.2.2	Zugumformen	218			
		3.6.2.3	Druckumformen	220			
		3.6.2.4	Zugdruckumformen	220			
		3.6.2.5	Kombinierte Verfahren	221			
	3.6.3		nstechnik beim Warmformen	221			
	3.6.4		formmaschinen	223			
	3.6.5	Vor- und	d Nachteile des Warmformens	225			
3.7	Trennen	(Spanen)	225			
3.8	Fügen .			227			
	3.8.1	Schweiß	en	227			
		3.8.1.1	Heizelementschweißen	229			
		3.8.1.2	Warmgasschweißen	230			
		3.8.1.3	Strahlungsschweißen	230			
		3.8.1.4	Reibungsschweißen	23			
		3.8.1.5	Induktionsschweißen	232			
	3.8.2	Kleben		232			
		3.8.2.1	Grundlagen	232			
		3.8.2.2	Abbindemechanismus der Klebung	233			
		3.8.2.3	Verfahrenstechnik	235			
	3.8.3	Mechani	sche Verbindungen	235			
3.9	Beschichten						
	3.9.1	Einteilur	ng der Beschichtungsverfahren	235			
	3.9.2	Streichve	erfahren	236			
	3.9.3		schichten	237			
3.10	Veredeln						
	3.10.1	Lackiere	n von Kunststoffen	239			
	3.10.2	Bedruck	en von Kunststoffen	239			
	3.10.3	Laserbes	chriften	241			
	3.10.4		gen	241			
	3.10.5		eren	241			
	3.10.6	Beflocken					
	3.10.7		eschichten	243 243			
	3.10.8		L	244			
	3.10.9	-	onieren	245			
	3.10.10		en	245			

4	Poly	olefine .		249
	4.1	Polyeth	ylen (PE)	249
		4.1.1	Das Wichtigste in Kürze	249
		4.1.2	Handelsnamen (Beispiele®)	249
		4.1.3	Eigenschaften	250
		4.1.4	Verarbeitung und Anwendung	251
		4.1.5	Anwendungsbeispiele	252
		4.1.6	Der Weg zum Polyethylen	253
			4.1.6.1 Hochdruckverfahren	253
			4.1.6.2 Niederdruckverfahren	254
		4.1.7	Der molekulare Aufbau des Polyethylens	256
			4.1.7.1 Polyethylene mit multimodaler Molmassenverteilung	258
			4.1.7.2 Ethylen-Copolymere mit α-Olefinen	259
			4.1.7.3 Metallocen-katalysierte Ethylencopolymere	
			(PE-MC)	260
	4.2	Chemis	che Modifikation von Polyethylen	260
		4.2.1	Abwandlung durch Vernetzen	260
		4.2.2	Abwandlung durch chemische Veränderungen	262
		4.2.3	Weitere Ethylen-Copolymere	263
			4.2.3.1 Unpolare Ethylen-Copolymere	263
			4.2.3.2 Polare Ethylen-Copolymere	263
	4.3	Polypro	ppylen (PP)	269
		4.3.1	Das Wichtigste in Kürze	269
		4.3.2	Handelsnamen (Beispiele®)	269
		4.3.3	Eigenschaften	270
		4.3.4.	Verarbeitung und Anwendung	271
		4.3.5	Anwendungsbeispiele	271
		4.3.6	Der Weg zum Polypropylen	272
		4.3.7	Der molekulare Aufbau von Polypropylen	273
			4.3.7.1 Isotaktisches Polypropylen (iPP)	274
			4.3.7.2 Syndiotaktisches Polypropylen (sPP)	274
			4.3.7.3 Ataktisches Polypropylen (aPP)	275
	4.4	Modifik	xation von Polypropylen	275
		4.4.1	PP-Copolymere	275
		4.4.2	Gefüllte und verstärkte Polypropylene	276
		4.4.3	Chemische Modifikation am fertigen PP-Polymer	277
	4.5	Polyisol	butylen (PIB)	277
		4.5.1	Handelsnamen (Beispiele®)	277
		4.5.2	Eigenschaften	277

		4.5.3	Verarbeitung (Beispiele)	78
		4.5.4	Anwendungsbeispiele	78
		4.5.5	Der Weg zum Polyisobutylen	78
	4.6	Polybut	en-1 (PB)	79
		4.6.1	Handelsnamen (Beispiele®)	79
		4.6.2	Eigenschaften, Verarbeitung und Anwendung 2	79
		4.6.3	Der Weg zum Polybuten-1	80
	4.7	Poly-4-	methylpenten-1 (PMP) 2	80
		4.7.1	Handelsnamen (Beispiel®)	80
		4.7.2	Eigenschaften	80
		4.7.3	Verarbeitung (Beispiele)	81
		4.7.4	Anwendungsbeispiele	81
		4.7.5	Der Weg zum Poly-4-methylpenten-1	81
	4.8	Geschio	htliches	82
	4.9	Tabella	rischer Eigenschaftsvergleich	83
5	Chlo	r-Kunst	stoffe	87
	5.1	Hart-Po	olyvinylchlorid (PVC-U) (Hart-PVC, weichmacherfreies PVC) 2	87
		5.1.1	Das Wichtigste in Kürze über Hart-Polyvinylchlorid 2	87
		5.1.2	Handelsnamen (Beispiele®)	87
		5.1.3	Eigenschaften	88
		5.1.4	Verarbeitung (Beispiele)	89
		5.1.5	Anwendungsbeispiele	90
		5.1.6	Der Weg zum Polyvinylchlorid	90
	5.2	Modifiz	cierte Vinylchlorid-Polymerisate	94
		5.2.1	Vinylchlorid-Copolymere	94
			5.2.1.1 Einteilung	94
			5.2.1.2 Eigenschaften, Verarbeitung und Anwendung 2	96
			5.2.1.3 Der Weg zu den Vinylchlorid-Copolymeren 2	96
		5.2.2	Besonders schlagfestes Polyvinylchlorid (PVC-HI) 2	97
			5.2.2.1 Eigenschaften, Verarbeitung und Anwendung 2	97
			5.2.2.2 Der Weg zum besonders schlagfesten Polyvinyl- chlorid	97
		5.2.3	Chloriertes Polyvinylchlorid (PVC-C) 2	98
			5.2.3.1 Eigenschaften, Verarbeitung und Anwendung 2	98
			5.2.3.2 Der Weg zum chlorierten Polyvinylchlorid 2	99
	5.3		Polyvinylchlorid (PVC-P) (Weich-PVC, weichmacherhaltiges	
		PVC)		99
		5.3.1	, ,	99
		5.3.2	Handelsnamen (Beispiele®)	00

		5.3.3	Eigenschaften	300
		5.3.4	Verarbeitung (Beispiele)	301
		5.3.5	Anwendungsbeispiele	301
		5.3.6	Der Weg zum Weich-Polyvinylchlorid	302
			5.3.6.1 Weichmacher	302
			5.3.6.2 Einarbeitung von Weichmachern	304
	5.4	Chlorie	ertes Polyethylen (PE-C)	306
		5.4.1	Eigenschaften, Verarbeitung und Anwendung	306
		5.4.2	Der Weg zum chlorierten Polyethylen	306
	5.5	Polyvin	ylidenchlorid (PVDC)	307
		5.5.1	Das Wichtigste in Kürze	307
		5.5.2	Handelsnamen (Beispiele®)	308
		5.5.3	Eigenschaften, Verarbeitung und Anwendung von	
			Vinylidenchlorid-Copolymerisaten	308
		5.5.4	Der Weg zu den Vinylidenchlorid-Copolymerisaten	308
	5.6		Chtliches	309
	5.7	Tabellar	rischer Eigenschaftsvergleich	309
6	Polys	styrol-Kı	unststoffe	313
	6.1	Das Wi	ichtigste in Kürze über Polystyrol-Kunststoffe	313
	6.2	Polysty	rol (PS)	314
		6.2.1	Handelsnamen (Beispiele®)	314
		6.2.2	Ataktisches Polystyrol	314
			6.2.2.1 Eigenschaften	314
			6.2.2.2 Verarbeitung (Beispiele)	315
			6.2.2.3 Anwendungsbeispiele	315
			6.2.2.4 Der Weg zum Polystyrol	315
		6.2.3	Stereoreguläre Polystyrole	317
	6.3	Modifiz	zierte Styrolpolymere (Abschnitt 6.4 bis 6.8)	318
	6.4	Styrol-A	Acrylnitril-Copolymerisat (SAN)	319
		6.4.1	Handelsnamen (Beispiele®)	319
		6.4.2	Eigenschaften und Verarbeitung	319
		6.4.3	Anwendungsbeispiele	320
		6.4.4	Der Weg zum Styrol-Acrylnitril	320
	6.5	Schlagz	äh modifiziertes Polystyrol (PS-I) (Styrol-Butadien SB)	321
		6.5.1	$Handelsnamen \; (Beispiele^{\circledR}) \; \;$	321
		6.5.2	Eigenschaften	321
		6.5.3	Verarbeitung (Beispiele)	322
		6.5.4	Anwendungsbeispiele	322
		6.5.5	Der Weg zum schlagzähen Polystyrol	322

	6.6	Acrylnitril-Butadien-Styrol-Polymerisate (ABS)					
		6.6.1	Handels	namen (Beispiele®)	326		
		6.6.2	Eigensch	naften	326		
		6.6.3	Verarbei	tung (Beispiele)	326		
		6.6.4	Anwend	ungsbeispiele	326		
		6.6.5	Der Weg	g zum Acrylnitril-Butadien-Styrol	327		
	6.7	Schlagz	ähe Acrylı	nitril-Styrol-Formmassen (ASA, AES, ACS)	329		
		6.7.1	Handels	namen (Beispiele®)	329		
		6.7.2	Eigensch Acrylnit	naften, Verarbeitung und Anwendung von ril-Styrol-Acrylat (ASA)	329		
		6.7.3		g zum Acrylnitril-Styrol-Acrylat	330		
	6.8	Blends			331		
		6.8.1	PS-I + F	PPE Blends	331		
		6.8.2	ABS + F	PC bzw. ASA + PC Blends	331		
		6.8.3	ABS + F	PA Blends	332		
	6.9	Geschic	htliches z	u den Styrolpolymeren	332		
	6.10	Tabellar	ischer Eig	genschaftsvergleich	333		
7	Ester	r-Thermoplaste					
	7.1	Ester-Gruppe in der Hauptkette					
		7.1.1		lenterephthalate ("gesättigte" Polyester) (PET, PBT) yethylennaphthalat (PEN)	340		
			7.1.1.1	Das Wichtigste in Kürze über Polyalkylenterephthalate	340		
			7.1.1.2	Der Weg zu den Polyalkylenterephthalaten	340		
			7.1.1.3	Polyethylenterephthalat (PET)	342		
			7.1.1.4	Polybutylenterephthalat (PBT)	344		
			7.1.1.5	Modifizierte Polyalkylenterephthalate	345		
			7.1.1.6	Polyethylennaphthalat (PEN)	346		
			7.1.1.7	Geschichtliches	346		
		7.1.2	Polycarb	oonat (PC)	347		
			7.1.2.1	Das Wichtigste in Kürze über Polycarbonat	347		
			7.1.2.2	Handelsnamen (Beispiele®)	347		
			7.1.2.3	Eigenschaften	348		
			7.1.2.4	Verarbeitung (Beispiele)	348		
			7.1.2.5	Anwendungsbeispiele	348		
			7.1.2.6	Der Weg zum Polycarbonat	349		
			7.1.2.7	Modifizierte Polycarbonate	351		
			7.1.2.8	Geschichtliches	353		

		7.1.3	Polyeste	rcarbonat (PEC)	353
			7.1.3.1	Das Wichtigste in Kürze	353
			7.1.3.2	Handelsnamen (Beispiele®)	353
			7.1.3.3	Eigenschaften	353
			7.1.3.4	Verarbeitung (Beispiele)	354
			7.1.3.5	Anwendungsbeispiele	354
			7.1.3.6	Der Weg zu Polyestercarbonat	354
			7.1.3.7	Geschichtliches	355
	7.2	Ester in	der Seite	nkette	355
		7.2.1	Polymet	hylmethacrylat (PMMA)	355
			7.2.1.1	Das Wichtigste in Kürze	355
			7.2.1.2	Handelsnamen (Beispiele®)	355
			7.2.1.3	Eigenschaften	355
			7.2.1.4	Verarbeitung (Beispiele)	356
			7.2.1.5	Anwendungsbeispiele	356
			7.2.1.6	Der Weg zum Polymethylmethacrylat	356
			7.2.1.7	Modifizierte Methylmethacrylat-Polymerisate	357
			7.2.1.8	Geschichtliches	359
	7.3	Cellulos	seester (C.	A, CP, CAB)	360
		7.3.1	Das Wic	chtigste in Kürze	360
		7.3.2	Handels	namen (Beispiele®)	360
		7.3.3	Eigensch	naften	360
		7.3.4	Verarbei	tung (Beispiele)	361
		7.3.5	Anwend	ungsbeispiele	361
		7.3.6	Der Weg	g zu den Celluloseestern	361
			7.3.6.1	Der Ausgangsstoff Cellulose	361
			7.3.6.2	Chemische Umsetzungen an Cellulose	362
		7.3.7	Geschich	ntliches	363
	7.4	Tabellar	ischer Eig	genschaftsvergleich	364
8	Stick	stoff-Th	ermoplas	te	373
	8.1	Polyam	ide (PA)		373
		8.1.1	Teilkrist	alline aliphatische Polyamide	373
			8.1.1.1	Das Wichtigste in Kürze	373
			8.1.1.2	Handelsnamen (Beispiele®)	375
			8.1.1.3	Eigenschaften	376
			8.1.1.4	Verarbeitung (Beispiele)	377
			8.1.1.5	Anwendungsbeispiele	378
			8.1.1.6	Der Weg zu den teilkristallinen aliphatischen	
				Polyamiden	378
			8.1.1.7	Wasserstoffbrücken (H-Brücken)	382

		8.1.2	Modifizierte teilkristalline aliphatische Polyamide		383	
			8.1.2.1	Chemische Modifizierung	383	
			8.1.2.2	Physikalische Modifizierung	383	
			8.1.2.3	Anwendungsbeispiele	384	
		8.1.3	Cycloali	phatische Polyamide	384	
			8.1.3.1	Das Wichtigste in Kürze	384	
			8.1.3.2	Handelsnamen (Beispiele®)	384	
			8.1.3.3	Eigenschaften	384	
			8.1.3.4	Verarbeitung (Beispiele)	385	
			8.1.3.5	Anwendungsbeispiele	385	
			8.1.3.6	Der Weg zu den cycloaliphatischen Polyamiden	385	
		8.1.4	Teilaron	natische Polyamide	386	
			8.1.4.1	Das Wichtigste in Kürze	386	
			8.1.4.2	Handelsnamen (Beispiele®)	388	
			8.1.4.3	Eigenschaftsprofil im Vergleich zu Standard-		
				Polyamiden	388	
			8.1.4.4	Verarbeitung (Beispiele)	388	
			8.1.4.5	Anwendungsbeispiele	388	
			8.1.4.6	Der Weg zu den teilaromatischen Polyamiden	389	
		8.1.5		erung von teilaromatischen Polyamiden	390	
		8.1.6	Geschich	ntliches	391	
	8.2	Polyacrylnitril PAN				
		8.2.1	Das Wic	htigste in Kürze	392	
		8.2.2	Handels	namen (Beispiel®)	392	
		8.2.3	Eigensch	aften von Polyacrylnitril-Barriere-		
			Kunststo	offen	392	
		8.2.4	Verarbei	tung und Anwendung (Beispiele)	393	
		8.2.5	Der Weg	g zu Polyacrylnitril-Barriere-Kunststoffen	393	
		8.2.6		AN-Fasertransformation zu Kohlenstofffasern		
				rn)	394	
		8.2.7	Geschich	ntliches	395	
	8.3	Tabellar	rischer Eig	genschaftsvergleich	395	
9	Acet	al- und I	Ether-The	rmoplaste	403	
	9.1	Polyoxy	methylen	(Polyacetal) (POM)	404	
		9.1.1		htigste in Kürze	404	
		9.1.2		namen (Beispiele®)	404	
		9.1.3		naften	404	
		9.1.4		tung (Beispiele)	405	
		9.1.5		ungsbeispiele	405	
				•		

		9.1.6	Der Weg zum Polyoxymethylen	406
			9.1.6.1 POM-Homopolymerisat (POM-H)	406
			9.1.6.2 POM-Copolymerisate (POM-Cop.)	407
			9.1.6.3 Eigenschaftsunterschiede zwischen POM-Homo-	
			und Copolymerisaten	408
		9.1.7	Modifizierte Polyoxymethylen-Polymerisate	408
		9.1.8	Geschichtliches	409
	9.2	Polyphe	enylenether (PPE)	409
		9.2.1	Das Wichtigste in Kürze	409
		9.2.2	Handelsnamen (Beispiele®)	410
		9.2.3	Eigenschaften	410
		9.2.4	Verarbeitung (Beispiele)	410
		9.2.5	Anwendungsbeispiele	410
		9.2.6	Der Weg zum Polyphenylenether	411
		9.2.7	Weitere modifizierte Polyphenylenether	412
		9.2.8	Geschichtliches	412
	9.3	Tabellar	rischer Eigenschaftsvergleich	412
10	Fluo	r-Kunsts	stoffe	415
	10.1	Polytetr	rafluorethylen (PTFE)	415
		10.1.1	Das Wichtigste in Kürze	415
		10.1.2	Handelsnamen (Beispiele®)	415
		10.1.3	Eigenschaften	415
		10.1.4	Verarbeitung (Beispiele)	416
		10.1.5	Anwendungsbeispiele	417
		10.1.6	Der Weg zum Polytetrafluorethylen	417
	10.2	Thermo	oplastisch verarbeitbare Fluor-Kunststoffe	420
		10.2.1	Das Wichtigste in Kürze	420
		10.2.2	Fluorthermoplaste und Beispiele® von Handelsnamen	421
		10.2.3	Eigenschaften	421
		10.2.4	Verarbeitung (Beispiele)	421
		10.2.5	Anwendungen	422
			10.2.5.1 Spezielle Anwendungsbeispiele	422
		10.2.6	Der Weg zu den thermoplastisch verarbeitbaren Fluor-	
			Kunststoffen	423
			10.2.6.1 Perfluorethylenpropylen FEP, auch Tetrafluor- ethylen-Hexafluorpropylen-Copolymer	423
			10.2.6.2 Perfluoroalkoxy-Copolymer (PFA)	423
			10.2.6.3 Ethylen-Tetrafluorethylen-Copolymer (ETFE)	423
			10.2.6.4 Polyvinylidenfluorid (PVDF)	424
			10.4.0.4 FOLYVIIIYIIQCIIIIQUIQ (FVDF)	424

			10.2.6.5	Tetrafluorethylen-Hexafluorpropylen-Vinyliden- fluorid-Terpolymer TFEHFPVDF (THV)	424
			10.2.6.6	Polyvinylfluorid (PVF)	425
				Polychlortrifluorethylen (PCTFE)	425
				Ethylen-Chlortrifluorethylen-Copolymer (ECTFE)	425
	10.3	Geschic		u den Fluorpolymeren	425
				enschaftsvergleich	426
11	Durc	plaste .			429
	11.1			Herstellung n	429
	11.2	Phenop	laste (Phe	nol-Formaldehyd-Kondensationsharze) (PF)	431
		11.2.1	Das Wic	htigste in Kürze	431
		11.2.2		namen (Beispiele®)	432
		11.2.3		aften von PF-Formstoffen	432
		11.2.4	Verarbeit	tung (Beispiele)	434
		11.2.5		ungsbeispiele	434
				Harzformstoffe, Harzformteile	434
			11.2.5.2	Schichtpressstoffe	434
			11.2.5.3	PF-Harze	434
		11.2.6	Der Weg	zu den Phenolharzen	435
		11.2.7	Geschich	ıtliches	439
	11.3	Aminop	olaste		439
		11.3.1		ffharze (Harnstoff-Formaldehyd-Kondensations- UF)	439
				Das Wichtigste in Kürze	439
				Handelsnamen (Beispiele®)	439
			11.3.1.3	Eigenschaften	440
			11.3.1.4	Verarbeitung, Anwendung (Beispiele)	441
				Der Weg zum Harnstoffharz	441
		11.3.2		harze (Melamin-Formaldehyd-Kondensations- MF)	443
				Das Wichtigste in Kürze	443
			11.3.2.2	Handelsnamen (Beispiele®)	443
			11.3.2.3	Eigenschaften	443
			11.3.2.4	Verarbeitung, Anwendung (Beispiele)	443
			11.3.2.5	Eigenschaften und Anwendung von modifizierten Melaminharzen (Beispiele)	444
			11.3.2.6	Der Weg zum Melaminharz	444
		11.3.3		atliches	446
	11.4	Reaktio		ıroplaste	446

		11.4.1	Ungesättigte Polyesterharze (UP)	446
			11.4.1.1 Das Wichtigste in Kürze	446
			11.4.1.2 Handelsnamen (Beispiele®)	447
			11.4.1.3 Eigenschaften	447
			11.4.1.4 Verarbeitung (Beispiele)	449
			11.4.1.5 Anwendungsbeispiele	450
			11.4.1.6 Der Weg zu den ungesättigten Polyesterharzen	451
			11.4.1.7 Geschichtliches	455
		11.4.2	Vinylesterharze (VE)	455
			11.4.2.1 Eigenschaften	455
			11.4.2.2 Verarbeitung, Anwendung (Beispiele)	455
			11.4.2.3 Der Weg zu den Vinylesterharzen	456
			11.4.2.4 Geschichtliches	456
		11.4.3	Epoxidharze (EP)	457
			11.4.3.1 Das Wichtigste in Kürze	457
			11.4.3.2 Handelsnamen (Beispiele®)	457
			11.4.3.3 Eigenschaften	457
			11.4.3.4 Verarbeitung (Beispiele)	458
			11.4.3.5 Anwendungsbeispiele	458
			11.4.3.6 Der Weg zu den Epoxidharzen	459
			11.4.3.7 Geschichtliches	464
	11.5	Sonstige	e Harze	464
		11.5.1	Siliconharze	464
		11.5.2	Polydiallylphthalatharze (PDAP, PDAIP)	465
		11.5.3	PUR-Gießharze	466
			11.5.3.1 Elastomer-Gießharze	466
			11.5.3.2 Harte PUR-Harze	466
		11.5.4	Cyanatester-Harze	467
12	Hoch	leistung	spolymere	469
	12.1	Polyary	letherketone (PAEK)	470
		12.1.1	Das Wichtigste in Kürze	470
		12.1.2	Handelsnamen (Beispiele®)	470
		12.1.3	Eigenschaften	470
		12.1.4	Verarbeitung (Beispiele)	471
		12.1.5	Anwendungsbeispiele	472
		12.1.6	Der Weg zu den Polyaryletherketonen	472
		12.1.7	Geschichtliches	472
	12.2	Polyary	late (PAR)	473
		12.2.1	Das Wichtigste in Kürze	473

	12.2.2	Handelsnamen (Beispiele®)	473
	12.2.3	Eigenschaften	473
	12.2.4	Verarbeitung (Beispiele)	474
	12.2.5	Anwendungsbeispiele	474
	12.2.6	Der Weg zu den Polyarylaten	475
	12.2.7	Geschichtliches	476
12.3	Flüssigk	ristalline Polymere (LCP)	476
	12.3.1	Das Wichtigste in Kürze	476
	12.3.2	Handelsnamen (Beispiele®)	476
	12.3.3	Eigenschaften	476
		12.3.3.1 Aufbau und Struktur der LCP	476
		12.3.3.2 Eigenschaften von thermotropen LCP	478
	12.3.4	Verarbeitung (Beispiele)	479
	12.3.5	Anwendungsbeispiele	479
	12.3.6	Der Weg zu den flüssigkristallinen Polymeren	480
		12.3.6.1 Herstellung der lyotropen LCP	480
		12.3.6.2 Herstellung der thermotropen LCP	481
	12.3.7	Geschichtliches	482
12.4	Polyimi	de (PI)	482
	12.4.1	Das Wichtigste in Kürze	482
	12.4.2	Handelsnamen (Beispiele®)	483
	12.4.3	Eigenschaften	483
	12.4.4	Verarbeitung (Beispiele)	485
	12.4.5	Anwendungsbeispiele	485
	12.4.6	Der Weg zu den Polyimiden	485
	12.4.7	Geschichtliches	490
12.5	Polyaryl	sulfone (PSU, PES, PPSU)	491
	12.5.1	Das Wichtigste in Kürze	491
	12.5.2	Handelsnamen (Beispiele®)	491
	12.5.3	Eigenschaften	492
	12.5.4	Verarbeitung (Beispiele)	492
	12.5.5	Anwendungsbeispiele	492
	12.5.6	Der Weg zu den Polyarylsulfonen	493
	12.5.7	Geschichtliches	494
12.6	Polyphe	enylensulfid (PPS)	495
	12.6.1	Das Wichtigste in Kürze	495
	12.6.2	Handelsnamen (Beispiele $^{(\!\scriptscriptstyle{\mathrm{l\!\!R}}\!\!)}$)	495
	12.6.3	Eigenschaften	495
	12.6.4	Verarbeitung (Beispiele)	496
	12.6.5	Anwendungsbeispiele	496

		12.6.6	Der Weg	zu Polyphenylensulfid	496
		12.6.7	Geschich	tliches	496
	12.7	Tabellar	ischer Eig	enschaftsvergleich	497
13	Elast	omere			503
	13.1	Perman	ent vernet	zzte Elastomere/Gummi	504
		13.1.1	Das Wic	htigste in Kürze über vernetzte Elastomere	504
		13.1.2	Handelsı	namen (Beispiele®)	506
		13.1.3	Eigensch	aften	506
		13.1.4	Verarbeit	tung (Beispiele)	508
		13.1.5	Anwendı	ungsbeispiele	508
		13.1.6	Der Weg	zu den permanent vernetzten Elastomeren	509
		13.1.7	Geschich	ıtliches	511
	13.2	Reversit	oel vernetz	zte Elastomere/Thermoplastische Elastomere TPE	511
		13.2.1	Das Wic	htigste in Kürze über TPE	511
		13.2.2	Handelsı	namen (Beispiele®)	514
		13.2.3	Allgemei	ne Eigenschaften	514
		13.2.4	Einzeleig	enschaften und Anwendungsbeispiele	517
			13.2.4.1	Thermoplastische Elastomere auf Olefinbasis, TPE-O/TPE-V (TPO/TPV)	517
			13.2.4.2	Thermoplastische Elastomere auf Styrolbasis, TPE-S (TPS)	517
			13.2.4.3	Thermoplastische Polyester-Elastomere, TPE-E (TPC)	518
			13.2.4.4	Thermoplastische Polyamid-Elastomere, TPE-A (TPA)	518
			13.2.4.5	Thermoplastische Polyurethan-Elastomere, TPE-U (TPU)	519
		13.2.5	Der Weg	zu den thermoplastischen Elastomeren	520
			13.2.5.1	TPE-O/TPE-V (TPO/TPV)	520
			13.2.5.2	TPE-S (TPS)	521
			13.2.5.3	TPE-E (TPC)	521
			13.2.5.4	TPE-A (TPA)	521
			13.2.5.5	TPE-U (TPU)	522
		13.2.6		ıtliches	522
14	Schar	umstoffe			523
	14.1	Allgeme	ines über	Herstellung und Eigenschaften	523
		14.1.1		namen (Beispiele®)	526
	14.2			nstoffe (PS-E)	526
				htigste in Kjirze	526

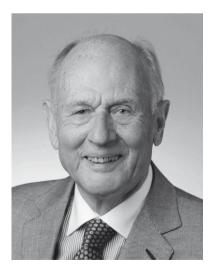
	14.2.2	Polystyrol-Hartschaumstoff, Partikel-Schaumstoff	526
		14.2.2.1 Eigenschaften	526
		14.2.2.2 Verarbeitung	527
		14.2.2.3 Anwendungsbeispiele	527
	14.2.3	Polystyrol-Hartschaumstoff, Extruder-Schaumstoff	527
		14.2.3.1 Eigenschaften	527
		14.2.3.2 Verarbeitung	527
		14.2.3.3 Anwendungsbeispiele	527
	14.2.4	Polystyrol-Integralschaumstoff	527
		14.2.4.1 Eigenschaften	527
		14.2.4.2 Verarbeitung (Beispiele)	528
		14.2.4.3 Anwendungsbeispiele	528
14.3	Polyolef	in-Schaumstoffe, PO-Schaumstoffe	528
	14.3.1	Das Wichtigste in Kürze	528
	14.3.2	Eigenschaften	528
	14.3.3	Verarbeitung (Beispiele)	529
	14.3.4	Anwendungsbeispiele	529
14.4	Polyuret	than-Schaumstoffe, PUR-Schaumstoffe	529
	14.4.1	Das Wichtigste in Kürze	529
	14.4.2	PUR-Hartschaumstoffe, (PUR-H)	530
		14.4.2.1 Eigenschaften	530
		14.4.2.2 Anwendungsbeispiele	530
	14.4.3	PUR-Weichschaumstoffe, (PUR-W)	530
		14.4.3.1 Eigenschaften	530
		14.4.3.2 Anwendungsbeispiele	531
	14.4.4	PUR-Halbhart-(semiflexible) Schaumstoffe	531
		14.4.4.1 Eigenschaften	531
		14.4.4.2 Anwendungsbeispiele	531
	14.4.5	PUR-Integral-Hartschaumstoffe, (PUR-I)	531
		14.4.5.1 Eigenschaften	531
		14.4.5.2 Anwendungsbeispiele	531
	14.4.6	PUR-Integral-Halbhart- und Weichschaumstoffe	532
		14.4.6.1 Eigenschaften	532
		14.4.6.2 Anwendungsbeispiele	532
	14.4.7	Der Weg zu den Polyurethan-Schaumstoffen	532
		14.4.7.1 Polyurethan-Schäumsysteme	532
		14.4.7.2 Chemie der PUR-Schäumsysteme	535
	14.4.8	Geschichtliches	538
14.5	Weitere	Schaumstoffe	539
	14.5.1	Polyvinylchlorid-Schaumstoffe	539

		14.5.2	Phenol-Formaldehyd-Schaumstoffe	539
		14.5.3	Harnstoff-Formaldehyd-Schaumstoffe	539
		14.5.4	Polymethacrylimid-Schaumstoffe	540
		14.5.5	Gummi-Schaumstoffe	540
	14.6	Tabellar	rischer Eigenschaftsvergleich	541
15	Kuns	ststoffe a	ıls Sonderwerkstoffe	543
	15.1	Elektroa	aktive Kunststoffe	543
		15.1.1	Oberflächenbehandlungen	544
		15.1.2	Elektrisch leitfähige Compounds	544
		15.1.3	Intrinsisch elektrisch leitfähige Polymere	545
		15.1.4	Polymere als Elektrete	547
		15.1.5	Ferroelektrische Polymere (Piezo- und Pyroelektrizität)	548
		15.1.6	Triboelektrizität (Reibungselektrizität)	549
	15.2	Funktio	onskunststoffe	550
		15.2.1	Polymere als Datenspeicher	550
		15.2.2	Polymere Leuchtdioden, Polymer-LEDs (PLEDs)	551
		15.2.3	Polymere Photovoltaik (PPV)	552
		15.2.4	Photoresists	554
		15.2.5	Brennstoffzellen	555
		15.2.6	Hybride Polymersysteme	556
	15.3	Nanote	chnologie und Kunststoffe	557
		15.3.1	Anwendung von Nanoröhren (CNT) als Zusatzstoffe für Kunststoffe	558
		15.3.2		558
		15.3.2	Graphen	559
	15 /		Nanotechnologie als Schrittmacher in die Zukunft offe in der Medizintechnik	560
	13.4			
		15.4.1	Polymilchsäure, Polylactid (PLA)	560
			15.4.1.1 Das Wichtigste in Kürze	560 560
			15.4.1.2 Handelsnamen (Beispiele®)	
	155	D:1	15.4.1.3 Eigenschaften, Verarbeitung, Anwendung	560
	15.5		mere	562
			Das Wichtigste in Kürze	562
		15.5.2	Biokunststoffe – Kunststoffe aus nachwachsenden (biogenen) Rohstoffen (NWR)	563
			15.5.2.1 Handelsnamen (Beispiele®)	563
			15.5.2.2 Cellullosewerkstoffe	564
			15.5.2.3 Stärkewerkstoffe	565
			15.5.2.4 Werkstoffe aus dem Bioreaktor	566
			15.5.2.5 Werkstoffe durch chemische Synthese biobasierter	568

			15.5.2.6 Biocomposites als Werkstoffe	568
			15.5.2.7 Blends als Werkstoffe	568
		15.5.3	Biologisch abbaubare Kunststoffe (BAK)	569
			15.5.3.1 Biokunststoffe neu definiert	569
		15.5.4	Anwendungsbeispiele und Ausblick	569
16			rheit, Gesundheits- und Umweltschutz beim Umgang offen	571
	16.1		sicherheit und Gesundheitsschutz beim Umgang	
			nststoffen	571
		16.1.1	Gewerbetoxikologische Begriffe (Auswahl)	571
		16.1.2	Herstellung von Polymeren und Kunststoff-Formmassen	571
		16.1.3	Verarbeitung und Prüfung von Kunststoffen	572
		16.1.4	Anwendung von Kunststoffen	573
	16.2		tschutz beim Umgang mit Kunststoffen	574
		16.2.1	Nachhaltige Entwicklung	574
		16.2.2	Abfall- und Recyclinghierarchie	574
		16.2.3	Grundsätzliche Aspekte beim Recycling von Kunststoffen	575
		16.2.4	Recyclingkreisläufe von Kunststoffen	575
	16.3		rirtschaft und Recycling aus Sicht nststoffindustrie	576
		16.3.1	Werkstoffliches Recycling	576
		16.3.2	Rohstoffliches Recycling	577
			16.3.2.1 Petrochemische Verfahren	578
			16.3.2.2 Solvolytische Verfahren	578
			16.3.2.3 Hochofenprozess	580
		16.3.3	Energetische Nutzung	580
		16.3.4	Deponie	582
		16.3.5	Littering alias Vermüllung	583
		16.3.6	Codierung erleichtert Recycling	584
	16.4	Abbauf	ähige, resorbierbare Kunststoffe	584
		16.4.1	Biologisch abbaubare Polymere (BAP)	584
		16.4.2	Photoabbaubare Polymere	585
		16.4.3	Wasserlösliche Polymere	585
17	Lite	raturvei	rzeichnis	587
	Sac	huzortza	rzeichnis	591

Prof. Dr. Phil. II Wolfgang Kaiser

Wolfgang Kaiser studierte und promovierte am Chemischen Institut der Universität Zürich. Anschließend folgten mehrere Jahre Industrietätigkeit im Bereich F+E auf dem Gebiet der Additive (J.R. Geigy AG, Basel). Danach die Berufung zum Professor an die FH Nordwestschweiz (ehemals HTL Brugg-Windisch).


Vor Jahrzehnten formulierte der Autor für seine Studierenden den "Hauptsatz der Kunststofftechnik":

 $Polymer-Rohstoff(e) + Zusatzstoff(e) \longrightarrow Kunststoff$

Dieser erleichtert nach wie vor vielen Ingenieuren den Zugang zu den Kunststoffen als Werkstoffklasse mit eigenen Gesetzmäßigkeiten.

Anlässlich seines 70. Geburtstags wurde Wolfgang Kaiser von der ETH Zürich mit der Staudinger-Durrer-Medaille ausgezeichnet. Die Ehrung erfolgte in Anerkennung seiner großen Verdienste auf dem Gebiet der Polymertechnologie. Als "Kunststoff-Kaiser" prägte er Hundertschaften von Ingenieuren in Windisch, in späteren Jahren auch am Departement Materialwissenschaft der ETH Zürich. Daneben übernahm er "berufsbegleitend" den Aufbau und Betrieb des Kunststoff-Ausbildungs- und Technologie-Zentrums (KATZ) in Aarau und war dessen langjähriger erster Geschäftsführer in Personalunion. Er ist Begründer einer systematischen Aus- und Weiterbildung in Kunststofftechnik für Ingenieure in der Schweiz.

Wolfgang Kaiser ist darüber hinaus Autor und Koautor zahlreicher wissenschaftlicher Publikationen auf dem Gebiet der Kunststofftechnik.

1 Einführung

1.3.1 Kurzer Abriss der Entwicklung der Polymerwissenschaften (ohne Copolymere und Blends)

Quelle: P. Smith und Natalie Stutzmann, ETH Zürich

Kunststoff aus Kasein 1530

Bartholomäus Schobinger (1500-1585)

Der St. Galler Bartholomäus Schobinger verrät Wolfgang Seidel, Mönch in Tegernsee und Andechs, eine geheime Rezeptur:

"Wenn man den Anweisungen folge leiste, kann man daraus Tischplatten, Trinkgeschirr und Medaillons gießen – also alles, was man will."

Erste überlieferte Rezeptur für einen Kunststoff

Vulkanisation von Kautschuk 1839

Charles Goodvear (1800-1860)

Die Verwendung von Naturkautschuk, der aus dem Milchsaft bestimmter Pflanzenarten gewonnen werden kann, ist bereits in Abbildungen mexikanischer Indianer aus dem 10. Jahrhundert dargestellt.

Charles Goodyears Vulkanisation (= weitmaschige Vernetzung der Polymerketten) mit Schwefel macht den Kautschuk elastisch und haltbar, und dadurch erst technisch einsetzbar.

U.S. Patent 3633

Kautschuk: caa ocho (indianisch): tränender Baum

Celluloid 1870

John W. Hyatt (1837–1920)

J. W. Hyatt entwickelt den ersten kommerziell erfolgreichen Kunststoff auf Grund Parkes' leicht entflammbarer Nitrocellulose-Campher-Mischung (Celluloid).

U.S. Patent 105338

Anwendungen: Photographische Filme (eingeführt von George Eastman 1884), Tischtennisbälle, Kämme

Viskose 1892

Charles Cross (1855-1935)


Edward Bevan (1856-1921)

Clayton Beadle (1868-1917)

Hilaire Bernigaud, Comte de Chardonnet (1839–1924)

C. Cross, E. Bevan und C. Beadle entwickeln, basierend auf Chardonnet's Methode zur Regenerierung von Cellulose (1884), einen Prozess zur Herstellung von Viskose. Durch eine chemische Reaktion werden die Polymermoleküle vorübergehend modifiziert, damit die Cellulose verarbeitbar wird.

U.S. Patent 520770

$$\begin{array}{c|c}
 & OH \\
 & OH \\
 & OH \\
 & OH
\end{array}$$

$$\begin{array}{c}
 & OH \\
 & OH \\
 & OH
\end{array}$$

$$\begin{array}{c}
 & OH
\end{array}$$

Anwendungen: Cellophan®-Filme, Rayon®-Fasern (rayonner (franz.): glänzen)

Protein-Struktur 1906

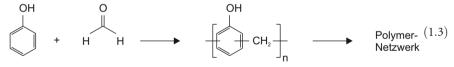
Emil H. Fischer (1852-1919)

Um 1900 sind 16 von den 20 Aminosäuren, welche als Grundbausteine der Proteine gelten, bekannt.

E. H. Fischer beschreibt das Formen von chemischen Verbindungen in Proteinen mit einem korrekten Mechanismus (Peptid-Verbindungen zwischen benachbarten Aminosäuren).

1906 prägt E. H. Fischer den Ausdruck "Polypeptid".

Ber. Chem. Ges. 39, 530 (1906)



Leo H. Baekeland (1863-1944)

L. H. Baekeland meldet 1907 grundlegende Patente zur Herstellung von Phenol-Formaldehyd-Harzen (PF) an.

Die von ihm gegründete Bakelitgesellschaft startet erste technische Produktion von PF-Harzen, den ältesten vollsynthetischen Kunststoffen, 1910.

Anwendung: Isolatoren, Stecker, Schalter, Billardkugeln, Radiogeräte

Struktur von Gummi 1910

Samuel S. Pickles (1878-1962)

S. S. Pickles schlägt für Gummi eine (zyklische) Kettenstruktur vor.

J. Chem. Soc. 97, 1085 (1910)

Er erhält 1939 die Colwyn-Goldmedaille für seine wertvollen Beiträge für die Gummi-Industrie.

Polyvinylchlorid (PVC) 1912

Friedrich Klatte (1880-1934)

F. Klatte, Griesheim-Elektron, lässt die Polymerisation und industrielle Produktion von Polyvinylchlorid (PVC) patentieren.

40 2 Grundlagen

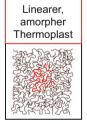
Bezogen auf die Größe der Molmassen stehen die "Hyperbranched Polymers" über den Dendrimeren und dienen u. a. als Beschichtungen/Überzüge für Oberflächen. Wie ihre Bezeichnung bereits vermuten lässt, ähneln sie in etwa einem stark verzweigten und dicht belaubten Ast. Ganz zuoberst sind nach dieser Betrachtungsweise die dendronisierten Polymere einzuordnen, die man sich als kleine Zylinder vorstellen kann ("entstanden aus einem ringsum mit Dendrimeren dicht bewachsenen stäbchenförmigen Makromolekül"). Futuristisch betrachtet könnten diese Zylinder beispielsweise als Gleitrollen oder Antriebswellen bei Nanomaschinen zum Einsatz kommen, vgl. Abschnitt 15.3.

Ergänzt sei diese architektonische Vielfalt durch drei Sonderfälle: Ringmoleküle sowie Leiter- und Halbleiter-Moleküle. Mit dem Begriff Leiter wird der Aufbau der Moleküle – vergleichbar einer Leiter mit Holmen und Sprossen – zum Ausdruck gebracht, vgl. Bild 2.6.

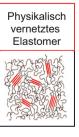
Doch selbst für den Fall eines linearen Makromoleküls in Form eines langen Fadens bestehen bei näherer Betrachtungsweise vielfältige Möglichkeiten im Kettenaufbau, die sich insbesondere durch die Art, Zahl und Verknüpfung der Grundbausteine ergeben, *Konstitution* genannt.

So können die miteinander verknüpften Kettenatome, die an beiden Enden je eine Endgruppe tragen, alles C-Atome (wie bei PE) oder aber verschiedenartig sein, z. B. neben C- auch O-Atome, wie im Falle von Polyoxymethylen (POM), aufweisen, vgl. Abschnitt 9.1. Auch ähnelt eine lineare Kette gelegentlich einem "Stacheldraht", dessen "Stacheln" verschiedene Positionen zueinander einnehmen können, dies betrifft im Besonderen die räumliche Anordnung von kleinen Seitengruppen (Atome und Atomgruppen) längs der Ketten, *Konfiguration* genannt, beispielsweise im Polypropylen (PP), vgl. Abschnitt 4.3.

Überdies besteht für ein Makromolekül die Möglichkeit, verschiedene Anordnungen (Lagen) im Raum einnehmen zu können: die Art der räumlichen Gestalt eines Makromoleküls wird *Konformation* genannt.


Schließlich kann die räumliche Anordnung der Makromoleküle zueinander variieren, d. h. das Zusammenfügen mehrerer Ketten zu einem dreidimensionalen Verband kann auf verschiedene Weise geschehen. Neben den bereits erwähnten Ordnungszuständen amorph und (teil)kristallin sind weit- und engmaschige Vernetzungen zwischen benachbarten Makromolekülen möglich. Die Vernetzungen können dabei sowohl chemischer als auch physikalischer Natur sein. Von chemischer Vernetzung spricht man beim Vorliegen chemischer Bindungen innerhalb und

Konstitution


Konfiguration

Konformation

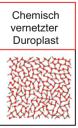

vernetzte Makromolekülketten

Bild 2.7: Schematische Darstellung der zweidimensionalen Projektionen verschiedenartiger Polymere

zwischen den Makromolekülen, die das Netz quasi als ein einziges "Riesenmolekül" zusammenhalten. Im Gegensatz dazu steht die physikalische Vernetzung, bei der "nur" physikalische (reversible) Kräfte wirksam sind, vgl. Bild 2.7.

Nicht zuletzt sei nochmals in Erinnerung gerufen, dass ein Kunststoff seine Endeigenschaften erst durch den Verarbeitungsprozess erhält. Weitere Einzelheiten sind in Abschnitt 2.5 beschrieben. Zuvor soll jedoch der Frage nachgegangen werden, wie solche Makromoleküle entstehen können, d. h. welche chemischen Prozesse zu Polymermolekülen führen.

2.2 Bildungsreaktionen für Makromoleküle – Polyreaktionen

Nahezu alle für die Technik bedeutenden Kunststoffe sind durch Synthesereaktionen entstanden, bei denen die Ausgangsstoffe zunächst als niedermolekulare Verbindungen in Form sog. Monomere (griechisch: monos, einzeln, allein; meros, Teil, Anteil), vorlagen. Daneben existiert die Möglichkeit, Kunststoffe durch chemische Umsetzungen an synthetischen Makromolekülen oder durch Umwandlung von Naturstoffen herzustellen, vgl. Abschnitt 2.2.6.

Bildungsreaktionen/Polyreaktionen

Im Folgenden sollen zunächst die Synthesereaktionen, auch *Polyreaktionen* bzw. Polymerbildungsreaktionen genannt, erläutert werden. Dabei wird als generischer Term für alle Synthesereaktionen der Oberbegriff **Polymerisation** festgelegt. Nach der Art der ablaufenden chemischen Reaktionen unterteilt man in die drei Klassen:

Oberbegriff Polymerisation

- *Kettenpolymerisation* (*Polymerisation*),
- Kondensationspolymerisation (Polykondensation),
- Additionspolymerisation (Polyaddition).

Eine Differenzierung nach dem Mechanismus der ablaufenden Polyreaktionen führt zu einer weiteren Einteilung in Kettenwachstumsreaktionen und Stufenwachstumsreaktionen, vgl. Bild 2.8.

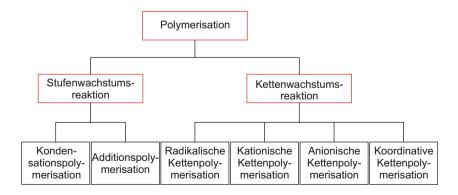


Bild 2.8: Einteilung der Polyreaktionen

92 2 Grundlagen

enge Molmassenverteilung breite Molmassenverteilung die Molmasse in einer ersten Näherung zu $M > 10^4$ g/mol errechnen. Tatsächlich bewegen sich die mittleren Molmassen \overline{M} der meisten Kunststoffe in der Größenordnung zwischen 10⁴ und 10⁶ g/mol. Diese riesige Spanne ist allerdings in der Praxis eher die Ausnahme (z. B. bei PE), doch eine mehr oder weniger breite Verteilung der Molmassen gehört zum Erscheinungsbild eines jeden Kunststoffs. Auch ist typischerweise die zu erwartende Verteilung, die sog. Molmassenverteilung, asymmetrisch, vgl. Bild 2.45. Eine enge Molmassenverteilung verschafft u. a. den Vorteil eines engeren thermischen Erweichungsbereichs infolge höherer Gleichmäßigkeit der Ketten. Umgekehrt wirken bei einer breiten Molmassenverteilung die niedermolekularen Anteile im Verarbeitungsprozess als "Schmiermittel", aus dem sich vielfältiger Nutzen ziehen lässt, so z. B. auch als Verträglichkeitsvermittler zur Herstellung von Polyblends. Zur genaueren Beschreibung eines Polymers werden zusätzlich sog. Mittelwerte verwendet, aus denen sich wertvolle Informationen hinsichtlich bestimmter Eigenschaften eines Kunststoffs ergeben. So besteht z.B. eine direkte Beziehung zwischen dem Zahlenmittel $\overline{M_n}$ und der Festigkeit oder zwischen dem Gewichtsmittel $\overline{M_w}$ und der Viskosität. Für die Erfassung der einzelnen Mittelwerte gelangen mehrere Messmethoden zur Anwendung, z. B Osmose $(\overline{M_n})$ oder Lichtstreuung $(\overline{M_w})$.

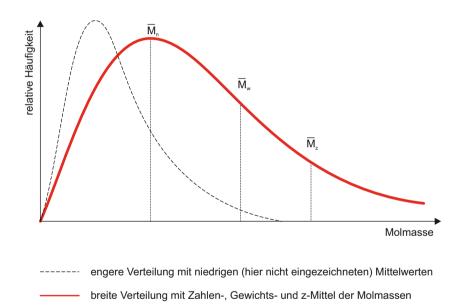


Bild 2.45: Molmassenverteilungen mit Angabe der Lage verschiedener Mittelwerte

Mittelwerte

Am Beispiel der beiden Mittelwerte, dem Zahlen- bzw. Gewichtsmittel sei das Gesagte näher erläutert.

Das Zahlenmittel errechnet sich nach der Formel zu

$$\overline{M_n} = \frac{\sum n_i \cdot M_i}{\sum n_i} = \frac{\sum m_i}{\sum n_i}$$
 (2.44)

Dabei bedeutet n_i die Zahl der Moleküle einer Spezies i mit der Molmasse M_i , wie sie z. B. bei der Fraktionierung (schrittweises Ausfällen der Makromoleküle mit steigender Kettenlänge) eines Kunststoffs entsteht.

Fraktionierung

Das Gewichtsmittel dagegen definiert sich statt der Zahl über den Massenanteil m_i der Moleküle mit der Molmasse M_i

$$\overline{M_w} = \frac{\sum m_i \cdot M_i}{\sum m_i} = \frac{\sum n_i \cdot M_i^2}{\sum n_i \cdot M_i}$$
(2.45)

Zur Beschreibung mechanischer Eigenschaften werden oft höhere Durchschnittswerte gebraucht. Als Basis dafür dient das z-Mittel:

$$\overline{M_z} = \frac{\sum m_i \cdot M_i^2}{\sum m_i \cdot M_i} = \frac{\sum n_i \cdot M_i^3}{\sum n_i \cdot M_i^2}$$
(2.46)

Aus dem Quotienten der beiden Mittelwerte $\overline{M_n}$ und $\overline{M_w}$ lässt sich die Breite der Verteilung, auch als (Poly)Dispersität ($\overline{M_w}/\overline{M_n}$) bezeichnet, abschätzen. Für viele Polymerisationen pendelt dieser Wert zwischen 2 und 4. Statt der Dispersität wird häufig auch die Uneinheitlichkeit u angegeben, u errechnet sich nach der Formel

$$u = \frac{\overline{M_w}}{\overline{M_v}} - 1 \tag{2.47}$$

Daneben existieren noch weitere Mittelwerte, wie beispielsweise das Messungen leicht zugängliche Viskositätsmittel, $\overline{M_n}$.

2.4.3.4 Mittlerer Polymerisationsgrad

Eine andere Methode zur Erfassung der Kettenlänge ist die Angabe des mittleren Polymerisationsgrads, \overline{P} , der durch die folgende Formel berechnet wird:

mittlerer Polymerisationsgrad \overline{P}

$$\overline{P} = \frac{\overline{M}}{M_0} \tag{2.48}$$

 M_0 entspricht der Molmasse des Monomers bzw. der konstitutionellen Wiederholungseinheit. Für \overline{M} ist die mittlere Molmasse einzusetzen, d. h. der Mittelwert für \overline{P} hängt davon ab, welcher Wert für \overline{M} eingesetzt wird. Für ein Polyethylen mit dem Zahlenmittel $\overline{M_n}=56\,000$ g/mol und $M_0=28$ g/mol ergibt sich somit ein mittlerer Polymerisationsgrad von $\overline{P_n}=2\,000$. Auch lässt sich mit Hilfe der Avogadro-Konstante N_A sehr einfach die absolute Masse eines einzelnen Makromoleküls berechnen. Allerdings bleiben die erhaltenen Werte immer noch winzig klein. So ergibt sich für ein Makromolekül des Polyethylens mit einer Molmasse von $M=3\,000\,000$ g/mol:

absolute Masse eines Makromoleküls

$$m = \frac{\overline{M}}{N_A} = \frac{3000000 \text{ g} \cdot \text{mol}^{-1}}{6.023 \cdot 10^{23} \text{ mol}^{-1}} = 4,98 \cdot 10^{-18} \text{g} = 4,98 \text{ ag}$$
 (2.49)

114 2 Grundlagen

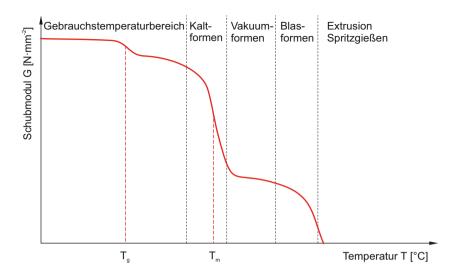
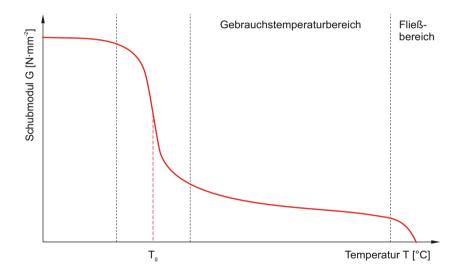


Bild 2.63: Schematische Schubmodul-Temperatur-Kurve eines teilkristallinen Thermoplasten

Proportionalität, die zwischen Molmasse und T_g besteht und daher bei Kunststoffen (in der Mehrheit ein Gemisch unterschiedlicher Molmassen bzw. von Makromolekülen verschiedener Länge) die Angabe exakter Temperaturwerte behindert, vgl. Abschnitt 2.4.3. Der damit verbundene Abfall des Schubmoduls (eine Folge der zunehmenden Brownschen Molekularbewegung) verhilft zunächst zu einem lederartigen und oberhalb von T_g zu einem kautschuk-elastischen/gummiartigen Verhalten. So lassen sich amorphe Thermoplaste oberhalb von T_g vakuumformen (auch als "Warmoder Thermoformen" bezeichnet), d. h. Thermoplast-Halbzeuge, wie Rohre, Tafelzuschnitte, können nach Erwärmen unter Übergang in diesen weichgummiähnlichen, elastischen Zustand ("thermoelastischer" Zustand) z. B. durch Tiefziehen oder Biegen in eine andere geometrische Form gebracht und diese durch Abkühlen unter T_g fixiert werden. Eine weitere Temperaturerhöhung führt schließlich in den Fließtemperaturbereich, d. h. hier gleiten die Ketten bei geringer Belastung aneinander ab. Urformprozesse wie Extrudieren und Spritzgießen sind dank des viskosen Fließens möglich. Typische amorphe Thermoplaste sind Polystyrol (PS), Polyvinylchlorid (PVC), Polymethylmethacrylat (PMMA), Celluloseacetat (CA), Celluloseacetobutyrat (CAB) sowie alle unvernetzten Copolymerisate von Polystyrol.

Bei den teilkristallinen Thermoplasten liegen Teilbereiche der Makromoleküle in einer bestimmten Ordnung vor, z. B. im einfachsten Fall in einer parallelen Ausrichtung von Molekülfadenstücken, wie das aus Bild 2.41, vgl. Abschnitt 2.4.2.2, zu ersehen ist. Die Anordnung in den Bereichen mit Abschnitten von parallelen fadenartigen Makromolekülen entspricht der Ordnung der Atome oder Moleküle in Kristallen. Als Folge davon besitzen diese Polymere zusätzlich zur Glasübergangstemperatur T_g eine Kristallitschmelztemperatur T_m (exakter: Schmelztemperaturbereich). Da die Nebenvalenzkräfte in den kristallinen Bereichen im Vergleich zu den amorphen erheblich größer sind, erschweren diese Kristallgitterstrukturen unterhalb ihrer Schmelztemperatur eine hohe Verformung. Selbst das Vakuumformen erfordert daher als Warmumformverfahren eine Erwärmung des Materials bis in den Kristallitschmelzbereich. Gleichzeitig zeigen jedoch die wichtigen teilkristallinen Polymere bei

Warmformen von amorphen Thermoplasten oberhalb T_g


Kristallitschmelztemperatur T_m bei teilkristallinen Thermoplasten Raumtemperatur und darüber – also im Gebrauchstemperaturbereich – ein hartzähes Werkstoffverhalten, da ihre amorphen Bereiche meist erst bei tieferen Temperaturen einfrieren. Zu den teilkristallinen Thermoplasten gehören z. B. Polyethylen (PE), Polypropylen (PP), Polyoxymethylen (POM), Polybutylenterephthalat (PBT) und viele Polyamide (PA).

Sind die unvernetzten Makromoleküle sehr lang, d. h. ist der Polymerisationsgrad bzw. die Molmasse sehr hoch oder sind die Makromoleküle ein wenig vernetzt, so verhält sich ein solcher Kunststoff beim Erwärmen nicht wie ein üblicher Thermoplast. Diese bei Normaltemperatur festen Kunststoffe werden beim Erwärmen nicht plastisch formbar oder gar schmelzflüssig, sondern sie erreichen nur einen weichgummiartig-elastischen Zustand. Daher nennt man solche Materialien auch *Thermoelaste*, vgl. Abschnitt 2.3.2.

Ferner kennt man Thermoplaste, deren Makromoleküle abschnittsweise aus zwei, gelegentlich auch aus mehreren verschiedenen Bausteinen ("Monomeren") bestehen. Führt einer der Bestandteile dabei zu weichen (gummiartigen), der andere zu harten (glasigen) Bereichen ("Phasen"), so sind solche Kunststoffe – meist Block- oder Pfropfcopolymerisate – bei Normaltemperatur weichgummiartig-elastisch; doch im Gegensatz zu den Elastomeren nur physikalisch vernetzt, vgl. Abschnitt 13.2. Beim Erwärmen bis in den Fließbereich werden sie wie die üblichen Thermoplaste plastisch formbar. Man nennt sie daher *thermoplastische Elastomere* (TPE), vgl. Bild 2.64.

Thermoelaste

physikalisch vernetzt thermoplastische Elastomere (TPE)

Bild 2.64: Schematische Schubmodul-Temperatur-Kurve eines thermoplastischen Elastomers

2.6.2.2 Elastomere und Duroplaste

Es gibt aber auch Kunststoffe, die bei Wärmezufuhr nicht plastisch formbar werden. Bei diesen Kunststoffen ist zu unterscheiden, ob sie bei Normaltemperatur gummiartig-elastisch sind oder ob sie harte, feste Werkstoffe darstellen.

3.2 Begriffe und Einteilung der Fertigungsverfahren nach DIN 8850

Herstellung eines Körpers Fertigungsverfahren heißen nach DIN 8850 alle Verfahren zur Herstellung von geometrisch bestimmten festen Körpern. Die allgemeine Einteilung der Fertigungsverfahren erfolgt in Hauptgruppen, vgl. Bild 3.2. Diese Einteilung basiert auf der Überlegung, dass die Herstellung eines Körpers entweder die Schaffung einer Ausgangsform (Urform) aus formlosem Stoff, die Änderung der Form oder die Änderung der Stoffeigenschaften bedingt. Merkmale für die Hauptgruppen der Fertigungsverfahren sind in Bild 3.3 ersichtlich.

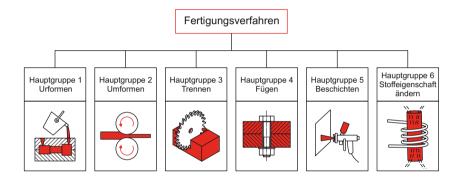


Bild 3.2: Einteilung der Hauptgruppen

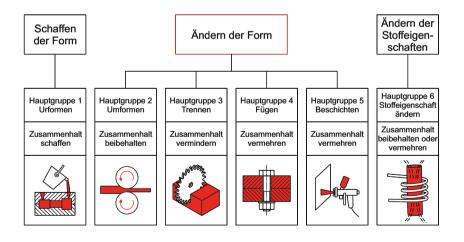


Bild 3.3: Merkmale für die Hauptgruppen der Fertigungsverfahren

Unter Zuhilfenahme dieser Merkmale lassen sich die Fertigungsverfahren der Kunststofftechnik in die folgenden Haupt- und Untergruppen einteilen, vgl. Bild 3.4. Neu wird als Merkmal für die Hauptgruppe 6 der Oberbegriff Veredeln eingeführt. Damit

soll zum Ausdruck gebracht werden, dass die in dieser Gruppe aufgeführten Verfahren im Allgemeinen einer Wertmehrung der Erzeugnisse dienen, insbesondere durch Verbesserung der Eigenschaften ihrer Oberflächen. Die klassischen Fertigungsverfahren zum Ändern der Stoffeigenschaften, wie sie vor allem bei den metallischen Werkstoffen zum Einsatz gelangen (z. B. Aufkohlen), treten somit in den Hintergrund im Vergleich zur Bedeutung oberflächenbezogener Prozesse bei Formteilen und Halbzeugen aus Kunststoff. Gleichzeitig bildet das Veredeln eine wichtige Ergänzung zum Ändern von Eigenschaften auf der rohstofflichen Ebene, vgl. Abschnitt 2.5, Modifizierung von Polymeren und Kunststoffen.

Nicht zuletzt bietet sich eine Enteilung der Fertigungsverfahren unter Einbeziehung der Technologie des Aufbereitens an, da diese Verfahren die Eigenschaften der anschließend gefertigten Bauteile bzw. Halbzeuge in fundamentaler Weise mitbestimmen. Damit verbundene Mischprozesse werden auch als Compoundieren bezeichnet. Zudem finden sich nicht selten Beispiele in der Praxis, wo einzelne Aufbereitungsvorgänge auf klassischen Verarbeitungsmaschinen stattfinden.

Aufbereiten, Compoundieren

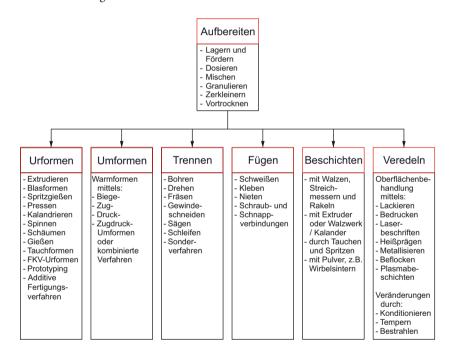


Bild 3.4: Einteilung der Fertigungsverfahren in der Kunststofftechnik

3.3 Prinzip der wichtigsten Ver- und Bearbeitungsverfahren

Die in Bild 3.4 bereits vermittelte Übersicht gibt einen Eindruck von den vielfältigen Möglichkeiten, mit denen Kunststoffe ver- und bearbeitet werden können. Zugleich entpuppt sich diese gewaltige Verfahrensbreite und -tiefe als einer der ganz großen

4 Polyolefine

Trivialnamen haben es so an sich. Gelegentlich basieren sie auf einer einzigen, oft zufälligen Beobachtung. Ein Paradebeispiel dafür liefert die Bezeichnung Olefine. Der Beiname Olefine für die Stoffklasse der Alkene geht auf chemische Experimente im vorletzten Jahrhundert zurück, bei denen sich die Gase Ethylen, Propylen und Isobutylen mit dem ebenfalls gasförmigen Chlor zu flüssigen, ölartigen/ölbildenden Substanzen ("Olefine") vereinigten. Doch die Polymere dieser Gase sind alles andere als ölartige/ölbildende Substanzen – eher aus "Ölen" gebildet. Es sei denn, man beziehe in das Wort Polyolefine das chemische Recycling mit ein, bei dem diese "Polyalkene" wiederum zu Ölen werden. Also doch Polyolefine!

4.1 Polyethylen (PE)

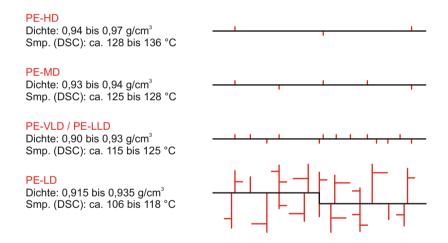
4.1.1 Das Wichtigste in Kürze

Polyethylen ist ein teilkristalliner, unpolarer, durch radikalische oder katalytische Kettenpolymerisation herstellbarer Thermoplast mit einer Glasübergangstemperatur von $T_g \approx 70$ bis 125 °C. Je nach Polymerisationsbedingungen entstehen Makromoleküle, die sich in ihrer mittleren Kettenlänge, mittleren Molmasse, Molmassenverteilung und in ihrem Verzweigungsgrad, sowie im Gehalt oder in der Verteilung von Comonomeren unterscheiden. Daraus lassen sich vier Haupttypen ableiten: PE-LD (PE niedriger Dichte) ist ein vielfach verzweigtes Homopolymer bzw. Copolymer und enthält neben Kurz- auch Langkettenverzweigungen. PE-HD (PE hoher Dichte), PE-MD (PE mittlerer Dichte) und PE-LLD (lineares PE niedriger Dichte) bestehen aus weitgehend linearen Ketten, die abhängig von der Art und Menge der Comonomere kurzkettige Verzweigungen besitzen. Alle PE-Typen sind elektrisch hochwertige Isolierstoffe (z. B. für Kabel) und chemisch sehr gut beständig. Mit großem Abstand wichtigstes Einsatzgebiet für PE-LD und PE-LLD ist der Foliensektor. Bei den PE-HD-Typen geht fast ein Drittel in den Verpackungssektor, z. B. für die Lagerung und den Transport flüssiger Füllgüter (Blasformteile). Es folgen Spritzgießteile, z. B. Flaschentransportkästen und Extrudate, z. B. Rohre und Folien.

PE ist der wichtigste Standardkunststoff mit der größten Produktionsmenge. Einen Vergleich von Eigenschaften ermöglicht Abschnitt 4.9 am Ende dieses Kapitels. Normen: DIN EN ISO 1872; DIN EN ISO 11542 (PE-UHMW).

4.1.2 Handelsnamen (Beispiele®)

Escoren, Enable, Exceed, ExxonMobil, Paxxon (ExxonMobil); Braskem, UTEC (Braskem); Agility, Attane, Continuum, Dowlex, Dow (Dow); Alathon, Hostalen, Lupolen,


teilkristalliner unpolarer Thermoplast

vier Haupttypen 250 4 Polyolefine

Microthene, Petrothene, Purell, Starflex (LyondellBasell); Borealis, Borcell, Borlink, BorPEX, Bormed, Visico (Borealis); Marlex, MarFlex, mPact (Chevron Phillips); INEOS, Eltex, Rigidex (Ineos); NOVAPOL, SCLAIR, SURPASS (Nova Chemicals); Sabic, Vestolen A (Sabic); Lumicene, Total Petrochemicals (Total); Clearflex, Eraclene, Flexirene, Riblene (Versalis).

4.1.3 Eigenschaften

Verschiedenartigkeit im Gefügeaufbau Unterschiede im Werkstoffverhalten der einzelnen PE-Typen erklären sich primär durch ihre Verschiedenartigkeit im Gefügeaufbau, d. h. der unterschiedlichen Kristallinität, vgl. Bild 4.1. Die Technik verwendet diese Erkenntnis systematisch und auf vielfältige Weise für eine gezielte Steuerung wichtiger Produkteigenschaften. So zeigen Dichte, Steifigkeit, Härte, Abriebfestigkeit, Gebrauchstemperatur und Chemikalienbeständigkeit eine direkte Abhängigkeit vom kristallinen Anteil. Demgegenüber ist der amorphe Anteil wichtig für die mechanische Festigkeit, Zähigkeit, Kerbschlagzähigkeit sowie die Spannungsrissbeständigkeit.

Bild 4.1: Schematische Darstellung der unterschiedlichen Strukturen bei PE (nach LyondellBasell)

Je nach Schichtdicke, die zwischen einer einigen µm dünnen Folie oder einem mehrere Zentimeter dicken Block liegen kann, ist PE fast glasklar bis stark milchiggetrübt ("transparent" bis "transluzent") oder sogar undurchsichtig ("opak"). PE-LD hat dabei eine bessere Transparenz als PE-HD. Im Vergleich zu den meisten anderen Thermoplasten besitzt Polyethylen eine niedrige Festigkeit, Härte und Steifigkeit, jedoch eine hohe Dehnbarkeit und hervorragende Schlagzähigkeit (auch in der Kälte) sowie ein günstiges Gleitreibungsverhalten. Bei Langzeitbelastung kann eine starke Kriechverformung auftreten, der durch Zusatz von Kurzglasfasern (Werkstoff-Kurzzeichen dann: PE-GF) entgegengewirkt werden kann. PE hat einen wachsartigen Griff und besitzt eine große Wärmedehnung, besonders PE-LD.

hohe Dehnbarkeit und hervorragende Schlagzähigkeit 284 4 Polyolefine

 Tabelle 4.6
 Eigenschaftsvergleich der Polyethylene und von Polybuten-1

Eigenschaft	Einheit	PE-LD	PE-MD	PE-HD	PE- UHMW	PE-LLD	PB-1
Dichte	g/cm ³	0,915- 0,935	0,925- 0,935	0,94- 0,97	0,93- 0,94	0,915- 0,935	0,930- 0,945
Zug-E-Modul	MPa	200-400	400-800	600- 1400	700-800	300-700	400-600
Streckspannung	MPa	8-10	11-18	18-30	ca. 22	20-30	Ca. 20
Streckdehnung	%	ca. 20	10-15	8-12	ca. 15	ca. 15	Ca. 20
Nominelle Bruchdehnung	%	>50	>50	>50	>50	>50	>50
Schmelzetemperatur	°C	105-118	120-125	126-135	130-135	126	126-130
Formbeständigkeits- temperatur HDT/A 1,8 MPa	°C	_	30-37	38-50	42-49	ca. 40	55-60
Längenausdehnungs- koeffizient, (23–55 °C)	10 ⁻⁵ /K	23-25	18-23	14-18	15-20	18-20	13
Brennbarkeit UL 94 bei 1,6 mm Dicke	Klasse	НВ*	HB*	НВ*	HB*	HB*	НВ*
Dielektrizitätszahl bei 100 Hz	_	2,3	2,3	ca. 2,4	2-2,4	2,3	2,5
Dielektrischer Ver- lustfaktor bei 100 Hz	$\times 10^{-4}$	2-2,4	2	1-2	ca. 2	2	2-5
Spezifischer Durch- gangswiderstand	$\Omega \times m$	>10 ¹⁵	>10 ¹⁴				
Spezifischer Ober- flächenwiderstand	Ω	>10 ¹³					
Elektrische Durch- schlagfestigkeit	kV/mm	30-40	30-40	30-40	30-40	30-40	20-40
Vergleichszahl der Kriechwegbildung CTI/A	_	600	600	600	600	600	600
Aufnahme von Wasser bei 23 °C/100 % RF	%	<0,05	<0,05	<0,05	<0,05	<0,05	<0,1
Feuchteaufnahme bei 23 °C/50 % RF, Sättigung	%	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05

^{*} auch als V-2 bis V-0 verfügbar

Tabelle 4.7: Eigenschaftsvergleich der Polypropylene

Eigenschaft	Einheit	PP-H Ho- mopoly- mer	PP-R Random- polymer	PP-B Blockco- polymer	(PP+EPDM)	PP-T20 Talkum	PP-T40 Talkum	PP-GF30 Glasfaser	PP- GFC30 Glas- faser chem.	PP-B40 Barium- sulfat
Dichte	g/cm³	0,90-	0,895-	0,895-	0,89– 0,92	1,04-	1,21- 1,24	1,21- 1,14	1,12- 1,14	1,98
Zug-E-Modul	MPa	1300- 1800	600-1200	800-1300	500-1200	2200- 2800	3500- 4500	5200- 6000	5500- 6500	2600
Streckspannung *Zugfestigkeit	MPa	25-40	18–30	20-30	10–25	32–38	30–35	70–75*	×0Z	18
Streckdehnung	%	8-18	10-18	10-20	10-35	5-7	3	_	I	2
Nominelle Bruchdehnung	%	>50	>50	>50	>50	>20	4-10	2,5	3,5	5
Schmelztemperatur	J.	162-168	135-155	160-168	160-168	162–168	162–168	162–168	162–168	162-168
Formbeständigkeitstemperatur HDT/A 1,8 MPa	J.	55–65	45-55	45-55	40-55	08-09	70-90	90-115	120-140	53
Längenausdehnungskoeffizient, längs (23–55°C)	$10^{-5}/{ m K}$	12–15	12–15	12–15	15–18	10-11	6-8	9	9	0,7
Längenausdehnungskoeffizient, quer (23–55 °C)	$10^{-5}/{ m K}$	ı	I	1	ı	10-11	6-8	2	7	
Brennbarkeit UL 94 bei 1,6 mm Dicke	Klasse	HB*	HB*	HB*	HB*	HB*	HB*	HB*	HB*	HB

16.2 Umweltschutz beim Umgang mit Kunststoffen

16.2.1 Nachhaltige Entwicklung

Die Idee der nachhaltigen Entwicklung (englisch sustainable development) basiert auf der Ausgewogenheit eines globalen Zivilisationsprozesses, der zum einen die Lebenssituation der heutigen Generation verbessert (Entwicklung) ohne gleichzeitig die Lebenschancen künftiger Generationen zu gefährden (Erhaltung der Umwelt). Die Umsetzung dieser Idee gehört zu den zentralen Aufgaben der Entwicklungsund Umweltpolitik. Von den verschiedenen Denkansätzen zur Lösung der anstehenden Probleme sei an dieser Stelle auf das Leitbild eines qualitativen Wachstums hingewiesen. Darunter versteht man die Vorgabe, das Wirtschaftswachstum vom Ressourcenverbrauch zu entkoppeln. Ansätze in diese Richtung legen den Schwerpunkt auf eine gezielte Wiederverwendung von Rohstoffen sowie auf die Schaffung eines Stoffstrommanagements. Letzteres fordert, dass Materialien, Immissionen und Abfälle ganzheitlich betrachtet und unter ökonomischen, ökologischen und sozialen Zielen eingesetzt und bewertet werden. Bisher aufgestellte Ökobilanzen klammerten ökonomische und soziale Aspekte aus und erfassten nur die umweltrelevanten Daten eines Unternehmens systematisch in Form einer Input-Output-Bilanz.

qualitatives Wachstum

Stoffstrommanagement

16.2.2 Abfall- und Recyclinghierarchie

Um ein verantwortungsbewusstes Vorgehen beim Umgang mit Abfällen zu gewährleisten, wurde von der EU in ihren Richtlinien (2008/98/EG) über Abfälle eine Prioritätenliste erstellt, die der nachfolgenden Abfallhierarchie (in Artikel 4) zugrunde gelegt ist:

- a) Vermeidung,
- b) Vorbereitung zur Wiederverwendung,
- c) Recycling,
- d) sonstige Verwertung, z. B. energetische Verwertung,
- e) Beseitigung.

Grundsätzlich ist somit nach einer Produktentstehungs- und Produktnutzungsphase eine erneute Nutzung des Produkts oder der Werkstoffe des Produkts in Form eines Kreislaufs anzustreben.

Wieder- oder Weiterverwendung Die erste und zugleich umweltfreundlichste Form dieses Kreislaufs bemüht sich um die Wieder- oder Weiterverwendung des Produkts, je nachdem, ob es in seiner ursprünglichen oder einer veränderten Funktion eingesetzt wird.

Die zweite Form wird als Wieder- oder Weiterverwertung der Werkstoffe bezeichnet, je nachdem, ob aus den Altwerkstoffen nach ihrer Aufbereitung die gleichen Werkstoffe oder andere Sekundärwerkstoffe hergestellt werden.

Zusätzlich zu diesem Produktrecycling ist auch ein Recycling möglichst aller Produktionsabfälle anzustreben, die bei der Herstellung von Werkstoff und Produkt entstehen; inbegriffen ein Abfallrecycling der Hilfs- und Betriebsstoffe, die für die Fertigungsprozesse erforderlich sind.

16.2 Umweltschutz 575

16.2.3 Grundsätzliche Aspekte beim Recycling von Kunststoffen

Verfolgt man die Entwicklungsgeschichte der Kunststoffe als selbstständige Werkstoffklasse bis in ihre Anfänge zurück, so stellt man fest, dass es diesen Materialien selten vergönnt war, neue oder gar revolutionäre Entwicklungen auszulösen. Stattdessen mussten sich die Polymere als Neulinge zuerst einmal bei althergebrachten Bauteilen bewähren und vor allem billiger sein. Die kunststofferzeugende und -verarbeitende Industrie war daher schon immer gezwungen, eine größtmögliche Materialausnutzung zu erreichen, um im Konkurrenzkampf mit anderen Werkstoffklassen bestehen zu können. So gesehen haben Energieverteuerung und Umweltschutz diese Bemühungen wohl verstärkt, aber nicht ausgelöst. Als Einstieg in die nachfolgenden Ausführungen empfiehlt es sich vorgängig die im Abschnitt 1.2.1 behandelten Sachverhalte zu reflektieren und daraus eigene Schlüsse zu ziehen.

16.2.4 Recyclingkreisläufe von Kunststoffen

Für die Praxis ergeben sich die folgenden Recyclingkreisläufe, vgl. Bild 16.1.

Im Primärkreislauf, auch als innerbetriebliches Recycling bezeichnet, kommen Produktionsabfälle erneut als Primärwerkstoffe zur Herstellung des Produkts zum Einsatz.

innerbetriebliches Recycling

- Im Sekundärkreislauf, auch als Wieder- oder Weiterverwendung bezeichnet, erfolgt entweder eine erneute Benutzung eines gebrauchten Produkts für den gleichen oder einen anderen Verwendungszweck.
- Im Tertiärkreislauf, auch als werkstoffliches Recycling bezeichnet, lassen sich Kunststoffabfälle durch Aufbereitungsprozesse einer Wieder- und Weiterverwertung als Sekundärwerkstoffe für neue Produkte zuführen.
- rohstoffliches Recycling

Recycling

werkstoffliches

 Im Quartärkreislauf, auch als rohstoffliches Recycling bezeichnet, entstehen aus qualitativ minderwertigen Altkunststoffen chemische Sekundärrohstoffe, die je nach Ausgangsmaterial zur Herstellung neuer Kunststoffe oder für andere chemische Prozesse Verwendung finden.

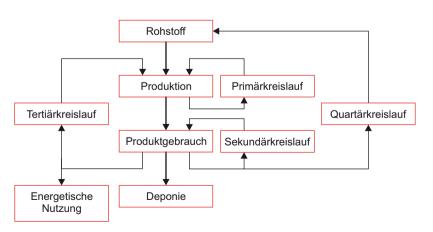


Bild 16.1: Recyclingkreisläufe

A	Aminoplaste 439
	11-Aminoundecausäure 375
Abbau von Polymeren 66	amorph 37, 40, 86, 113, 389, 477, 491
abbaufähige Kunststoffe 584	amorphes Polyamid 388
Abbaureaktion 123	amorphes Polyethylenterephthalat PET-A
Abbindemechanismus der Klebung 233	343
Abfallwirtschaft 576	Amylopektin 565
abgewandelte Naturstoffe 10	Amylose 565
ABS + PA Blends 332	Anion 46
ABS + PC Blends 331	anionische Kettenpolymerisation 48
Abwandlung durch Vernetzen 260	Anisotropie 97, 102, 477
Acetal 406	antiadhäsiv 415, 418
Acetal-Thermoplaste 403	Antioxidantien 103, 124
Acetat-Reyon 364	Antiquietscheffekt 321
Acetylen 290, 545	Antistatika 104
Acrylfaser 18	Aramid 447, 480
Acrylglas 357	Arbeitssicherheit 571
Acrylkunststoff 14	aromatische Dicarbonsäure 473
Acrylnitril 320, 393	aromatische Hydroxycarbonsäure 473
Acrylnitril-Butadien-Kautschuke NBR 505	aromatische Polyamide 480
Acrylnitril-Butadien-Styrol ABS 325, 327	aromatischer Polyester 339, 473
Acrylnitril-Methylmethacrylat AMMA 358	Arylimid-Gruppe 485
Acrylnitril-Styrol-Acrylat ASA 329	ASA + PC Blends 331
Acrylsäuremethylester 356	
ACS 329	ataktisch 83
Additionspolymerisation (Polyaddition)	ataktisches Polystyrol 314
	Atom 34
41, 62	Atombindung 35, 67 f.
Additive 36, 99, 145, 506	äußere Alterungsursachen 123
Adhäsion 232	äußere Weichmachung 102
AES 329	äußerer Weichmacher 299
Agro-Plastik 26	Aufbau eines Extruders 153
AHA-Schutz 572	Aufbereiten (Compoundieren) 99, 143 f.,
Aktivator 511	293
akzessorische Verunreinigungen 124	Aufbereitungsverfahren 145, 293
Alkoholyse 578	Aufspleißen 478
Allophanat-Gruppe 538	Aushärten 53 f.
Allophansäure 538	Autoxidation 124
Allylgruppe 465	Autoxidationszyklus 125
alternierendes Copolymer 52	Avogadro-Konstante 36
Alterung 123	Azeotropkondensation 64
Alterungsschutz 123	Azo-Verbindung 524
Alterungsschutzmittel 511	Azodicarbonamid 524
Alterungsvorgänge	
- chemische 123	В
– physikalische 126	
Amid-imid-Gruppe 485	Barriere-Kunststoffe 122, 308, 388, 392
Amidgruppe 373, 382	Batch-Reaktor 58
Amin 535	Bauarten des Kalanders 180
ω-Aminocarbonsäuren 374, 379	Baumwolle 362
Aminogruppe 59	Bedampfen 242
0 11	

Bedeutung der Kunststoffe 3	С
Bedrucken 239	
Beflocken 243	C-Faser 447
Begasung 523	C=C-Doppelbindung 43
Beibehaltung des Polymerisationsgrads 65	ε-Caprolactam 375, 389, 569
Benzidin 486	ε-Caprolacton 569, 584
Benzolring 316	Carbamid 441
Benzoylperoxid 453	Carbamidsäure 524
Beschichten 143, 235 f.	Carbanion 48
Beschleuniger 53, 429, 453, 511, 572	Carbeniumion 47
besonders schlagfestes Polyvinylchlorid	Carbonsäureamidgruppe 373
PVC-HI 297	Carbonylgruppe 470
Bestrahlen 245	Carboxylgruppe 59
Biegeumformen 218	Celloloseacetobutyrat CAB 360
Bigbags 144	Cellophan 565
Bi-Katalysatoren 259	Cellullosewerkstoff 564
bimodale Molmassenverteilung 94	Celluloid 12, 363
Bindungen, physikalische 70	Cellulose 66, 361
Bindungsabstände 68	Celluloseacetat CA 360
Bindungsenergie 68 f., 71	Celluloseester CA, CP, CAB 360 ff.
Bindungskräfte 67	Celluloseether 564
Biocide 519	Cellulosepropionat CP 360
Biocomposites 563, 568	Chargenkessel 54
Biokompatibilität 560	Chemiefasern 7, 182 ff.
Biokunststoffe 562	Chemikalienbeständigkeit 121
biologisch abbaubare Polymere 584	chemisch abbindende Klebstoffe (Reaktions-
Biomaterialien 560	kleber) 234
Bionik 559	chemische Beständigkeit 120
Bioplastics 562	chemische Bindung 67
Biopolymere 27, 562	chemische Elemente 4, 34
Bioreaktor 566	chemische Struktur 76
1,1-Bis(4-hydroxyphenyl)-3,3,5-trimethyl-	chemische Verbindungen 34
cyclohexan BPTMC 351	chemische Vernetzung 40, 53, 81, 116, 503
Bisphenol A (BPA) 347, 349, 456, 460	chemischer Alterungsvorgang 123
Bisphenol S 351	chemisches Modifizieren 95
Bisphenol TMC 351	chemisches Treibverfahren 198
Biuret-Gruppe 537	1-Chlor-2,3-epoxypropan 459
Blasfolienanlage 160	Chlor-Kunststoffe 287
Blasformen 162	Chlorieren 299
Blend 331 f.	chloriertes Polyethylen PE-C 306 f.
Blister-Verfahren 223	chloriertes Polyvinylchlorid PVC-C 298
Blockcopolymer 49, 52, 512	Chlorierung 66
Blockschaumstoffe 534	Chloropren-Kautschuk 505
BMC 179, 450	Chlorsulfoniertes Polyethylen CSM 262
Bohren 226	Chlortrifluorethylen 425
Brandschutzmittel 104	Chromophore 125
breite Molmassenverteilung 92	chronische Toxizität 571
Brennstoffzellen 555	chrono-mechanisches Verhalten 117
Butadien 509	cis-Butendisäure 451
Butadien-1,3 322	Citronensäure 524
Butadien-Styrol-Kautschuk 322, 505	Clarifier 105
Butan 525	CNT, Nanoröhren 557
Butanol 525	Coextrusion 161, 164
Butylacrylat 295	Comonomere 51
Butylenglykol 451	Compact Disc (CD) 6
Butylhydroxytoluol BHT 127	Compatibilizer 97
Butylkautschuk 505	Composites 101
•	Compoundieren 143, 293

Compression-RTM-Verfahren 194	Dimethylanilin 454
Copolymere 51	Dimethylether 525
Copolymerisat 51	2,6-Dimethylphenol 411
Copolymerisation 96	3,3 Dimetyl-p-diaminodicyclohexylmethan MACM 386
Cossee-Arlman-Mechanismus 50	
Crazes 288	Diol 341
Crazing 288	Dioxin 580
CR-Typ 277	Dioxolan 407
Cyanatester-Harz 467	Diphenole 473
cycloaliphatische Polyamide 384	Diphenylcarbonat 349
Cycloaliphatisches Epoxidharz 461	Diphenylether-Gruppe 470
Cycloalkan 525	Diphenylketon-Gruppe 470
Cyclohexan-1,4-dimethylol (CHDM) 345	Diphenylmethan-4,4'-diisocyanat, MDI
1,4-Cyclohexandimethanol 345	486, 537
Cyclohexanonperoxid 453	Diphenylsulfid-Gruppe 470, 495
Cyclopentan 525	Diphenylsulfon-Gruppe 470, 492
	Dipol 69
D	Dipol-Dipol-Kraft 72
	Direkt-Veresterung 341
Datenspeicher 550	Disaccharid 563
Degradation 584	dispergiert 323
Dehnung 117	Dispersionskräfte 72
Dehnviskosität 258	dispersives Mischen 146
Dehydrierung 322	Disproportionierung 46
Dendrimere 105	distributives Mischen 146
Dendrimermolekül 39	DMC 179, 450
dendronisierte Polymere 40	DNA-Struktur 19
Denisov-Zyklus 128	
	Dodecandisäure 375
Depolymerisation 80, 406, 416	Doppelbindung 42, 53
Deponie 582	Doppelschneckenextruder 155
Deponieverbot 583	Dotierung 545
Devulkanisationsverfahren 508	Downcycling 577
Di-Hydroxymethylharnstoff 441	Drahtummantelungsanlage 161
Diallylphthalat 452	Drehen 226
Diamin 374, 380 ff., 488	Dreiblockcopolymer 520
3,3'-Diaminobenzidin 487	Druckumformen 220
4,4'-Diaminodicyclohexylmethan PACM	Druckverformungsrest 508
386	Drug-Delivery-System 7
4,4'-Diamino-diphenylether 486	Dry-Blends 147, 304
Diblockcopolymer 52	Dry-Jet-Wet-Spinnen 187
Dibutylzinndilaurat 534	Dryblend-Verfahren 304
Dicarbonsäure 374	Dünnschichtkondensation 64
Dicyanatester 467	Dünnschliff 138
Diene 509	Dünnschnitt 138
Diethylentriamin 463	Durchflusskessel 54
Differential Scanning Calorimetry DSC	Durchflussrohr 54
135	Duroplaste 37, 40, 116, 151, 429
Differentialthermo-Analyse DTA 134	Dynamisch-Mechanische Analyse DMA
Diffusion 122	135
Digital Versitale Disc (DVD) 6	
Diglycidether 460	E
1,4-Dihydroxybenzol (Hydrochinon) 46,	_
482	E-PVC 291
Diisocyanat 522, 535	ECHA 573
Diisodecylphthalat DIDP 302	Einbetten 212
Diisononylphthalat DINP 302	Einfrieren 98
Dilatanz 107	Einfriertemperatur 116, 303
Dimeres 60	Einschneckenextruder 153
Difficies 00	Emocinicacidati udel 133

Einteilung der Nebenvalenzbindung 71	externe Gleitmittel 293
Elastizitätsmodul 117	Extruder 152
Elastomere/Gummi 37, 116, 151, 503-504	Extruder-Schaumstoff 527
– permanent vernetzte 504 f.	Extrudieren (Strangpressen) 152 ff.
- reversibel vernetzte 511 f.	Extrudierwerkzeug 157
Elastomerlegierung 512	Extrusions-Streckblasformen 165
Elektrete, Polymere 547	Extrusionsanlage 152
	Extrusionsblasformen 162
elektrisch leitfähige Compounds 544 elektrisch leitfähige Polymere 21	Extrusionsbiasionnen 102
Elektroaktive Kunststoffe 543	T.
Elektrodekantieren 418	F
	Eallyngan alymprication FF
Elektrolumineszenz 551	Fällungspolymerisation 55
Elektronegativität 69	Farbmittel 102, 145, 572
Elektronenbeschleuniger 246	Farbrigment 103
Elektronenpaarbindung 68	Farbstoff 103
Elektrospinnen 188	Faserorientierungswinkel 193
Emission 572	Faserspritzen 192
Emulgator 55, 533	Faserverstärkte Kunststoffe, FVK 191
Emulsion 55	Faserwickeln 193
Emulsionspolymerisation 55	FCKW/Fluorchloralkane 533
Emulsions-Polyvinylchlorid E-PVC 291	FDA-Richtlinie 573
Endgruppe 78	Ferroelektrische Polymere 548
Endgruppen-Stabilisierung 407	Fertigungsverfahren 142
energetische Nutzung 576, 580	Festkörperstruktur 84
Energiebedarf 4	Festphasenkondensation 342
enge Molmassenverteilung 92	FFS-lines 225
engmaschige Vernetzung 40	Fibrille 480
Entformungsmittel 105	Filmgießen (Foliengießen) 211
Entropie 84	flammhemmende Zusätze 104
entropie-elastisch 107	Flammschutzmittel 104
EPDM 276, 505	flammwidrig 289
Epichlorhydrin 456, 459	Fließhilfe 105
Epoxid 18, 63	Fließtemperaturbereich 114
Epoxidharz EP 457 ff.	Fließverhalten 90, 106
Erdöl 4, 25	Fluidinjektionstechnik 174
Ermüdungsschutzmittel 511	Fluor-Elastomere 426
Erweichungstemperatur $T_{\rm g}$ 113	Fluor-Kunststoffe 415
Essigsäure 363, 482	Fluor-Thermoplaste 421, 426
Essigsäureanhydrid 482	Fluorchlorkohlenwasserstoff, FCKW 525
Ester 339	Flüssigkristalline Polymere LCP 476
Ester-imid-Gruppe 485	Form-/Werkstoff 37
Estergruppe 339	Formaldehyd 406, 436, 441
Ether-imid-Gruppe 485	Formgießen 380
Ether-Thermoplast 403	Formmasse 37, 145
Ethylen 253	Formschaumstoffe 534
Ethylen-Chlortrifluorethylen-Copolymer	Formstoffe 145
ECTFE 423, 425	Formteil 151
Ethylen-Copolymere 263	Fräsen 226
Ethylen-Copolymere mit α-Olefinen 259	Fügen 143, 227
Ethylendiamin 537	Füllstoffe 100, 145, 511
Ethylenglykol 341, 451	Fullurene 559
Ethylenoxid 340, 407	Fungistatika 100, 519
Ethylen-Polymerisate, modifizierte 260	funktionalisierte Polymere 550
Ethylen-Propylen-Kautschuk EPM 276	funktionelle Gruppe 59
Ethylen-Tetrafluorethylen-Copolymere	Funktionskunststoffe 550
ETFE 422	Funktionswerkstoffe 5
Ethyl-Ethylacrylat-Copolymere EEA 265	FVK-Urformen 191
Extender 102	
·· *** - * = * =	

G	Haramassa 430
G	Harzmasse 430
Galvanisierbarkeit 326	Harzmatte 431
Galvanisieren 242	Harzträger 430 HAS 128
Gebrauchsadditive 99	
Gelcoat 195	Hauptsatz der Kunststofftechnik 99 Hauptvalenzbindungen 67 ff.
Gelcoat-Harze 452	HBHV-Copolymer 567
Gelieren 302	Heißabschlag 148
Gelierprozess 237	Heißmischung 304
gemischtzellig 196	Heißprägen 241
gesättigte Polyester 60, 340	Heizelementschweißen 229
Geschichte der Kunststoffe 8	Helix 85
geschlossenzellig 196	Herstellung von Chemiefasern 184
Gesundheitsschutz 571	heterophasische Copolymere 271
gewerbetoxikologische Begriffe 571	Hexafluorpropylen 423
Gewichtsmittel 93	Hexahydrophthalsäure 462
Gewindeschneiden 226	Hexahydrophthalsäure-diglycidester 462
Gießen 207	Hexahydrophthalsäureanhydrid 462
Gießharz 430	Hexa-Hydroxymethylmelamin 445
Glas 447	Hexamethylendiamin 375
Glasfaser 101	Hexamethylentetramin 437
Glastemperatur T_g 113, 303	High-Density-Polyethylen PE-HD 257
Glasübergangstemperatur T _g 116	Hilfsstoffe 533
Gleitmittel 105, 145	HM-C-Faser 395
Glucose 362	Hochdruckanlage 202
Glycidester 461	Hochdruckharze 430
Glycidether 460	Hochdruckverfahren 253
Glykolyse 578	hochfeste Polymerfasern 20
GMC 450	Hochleistungspolymere 469
GMT 179	hochmolekulare Stoffe 36
Granulieren 148	Hochofenprozess 580
Graphen 558	homöopolare Bindung 68
Grenzflächenkondensation 63, 350	Homopolymerisate 51
Grundlagen des Spinnprozesses 183	Hookesches Gesetz 117
Gummi 116, 504 ff.	HT-Faser 395
Gummi-Schaumstoffe 540	Hybride Polymersysteme 556
Guss-Polyamid 380	Hydrierung 578
Н	Hydrocellulose 564
п	Hydrofluor-Kohlenwasserstoffe 525
H-Brücken 382	Hydrolyse 363, 578 hydrolytischer Abbau 343
Haftvermittler 165	Hydroperoxid 124
Halbacetal 406	2-Hydroxybenzophenon 129
Halbzeug 151	Hydroxylgruppe 59
HALS, HAS 128	Hydroxymethylgruppe 436
Handlaminieren 195	α-Hydroxypropionsäure 561
Harnstoff 441	β-Hydroxyvaleriansäure, HV 567
Harnstoff-Formaldehyd-Schaumstoffe 539	hygroskopisch 266
Harnstoffharz UF 439	hyperverzweigtes Makromolekül 39
Hart-Polyvinylchlorid PVC-U 287	71
Hart-Weich-Kombination 515	I
Härter 429	
Härtezeit 112	Imidgruppe 373, 483
Hartsegment 512, 521	Implantat 7
Härtung 429	Imprägnieren 212
Harzblase 435	in situ-Polymerisation 55, 380
Harze 429	In-Mold Coating, IMC 240
Harzformstoff 430	In-Mold Decoration, IMD 240

In-Mold Labeling, IML 164, 240	Ko-Kneter 148
Induktionskräfte 73	Kobaltsalze 453
Induktionsschweißen 232	Kofler-Heizbank 139
inert 573	Kohäsion 232
Inertgas 64	Kohlenhydrate 26
Inhibitor 46	Kohlenstofffasern (C-Fasern) 394
Initiator 43, 47	Kohlenwasserstoffe 34
Initiatoraddition 46	kombinierte Verfahren 221
Initiierung/Startreaktion 43, 47 f.	Kondensation 58
innere Alterungsursachen 123	Kondensationscopolymerisation 59
innere Weichmachung 102, 363	Kondensationsharze 430
Insertion 254	Kondensationspolymerisation (Polykonden-
Integral-Schaumstoffe 102	sation) 41, 58 f.
interne Gleitmittel 293	Kondensationspolymerisation unter Ring-
intrinsisch elektrisch leitfähige Polymere	schluss 486
545	Konditionieren 245
Ionenbindungen 74	Konfiguration 40, 76, 82
Ionomere 74	Konformation 40, 84
irreversibel 504	Konstitution 40, 76 f.
Isobuten-Isopren-Kautschuk 505	koordinative Kettenpolymerisation 50
Isobutylen 249	koordinative Polyinsertion 50
Isocyanat 524, 572	Kopf-Kopf-Anordnung 81
Isophthalsäure 345, 387, 452	Kopf-Schwanz-Anordnung 81
Isophthalsäuredichlorid 481	Kopf-Schwanz-Polymerisation 44
Isopren-Kautschuke IR 505	kovalente Bindungen 68
isotaktisch 83	Kristallinität 88
isotaktisches Polypropylen PP-it 82 f.	Kristallisationsgrad 88
	Kristallitschmelztemperatur 114
K	Kristallkeimbildner 88
	Kristalllamellen 87
K-Wert 289	Kunststoffe 1, 33, 37, 99, 141
Kalandrieren 180	Kunststoff-Flaschen 308
Kaltabschlag 148	Kupplungsschicht 195
kalte Verbrennung 555	Kurzkettenverzweigung 249
Kaltformen 217	Kurzzeichen für Kunststoffe X
Kalthärtung 453	
Kanzerogenität 571	L
Kasein 12	7. 11
Katalysator 53	Lackieren 239
Kation 46	Lactam 374, 378
kationische Kettenpolymerisation 46	Lactone 569
Kautschuk 116	Laminat 448, 450, 458
Kautschuktyp 504	Laminierharze 431
Kehrichtheizkraftwerk 581	Laminierverfahren 450
Kerbschlagzähigkeit 408	Länge eines Makromoleküls 38
Keto-Enol-Tautomerie 129	Langkettenverzweigung 249
Kettenabbruch 45, 48 f.	Laserbeschriften 241
Kettencopolymerisation 51	Lasersintern 214
Kettenlänge 90	latent 462
Kettenpolymerisation 41–42, 61	Latex 511
Kettenstabilisierung 407	ω-Laurinlactam 375
Kettenübertragung 44, 47 f.	LC ₅₀ -Wert 571
Kettenverzweigung 45, 80	LD ₅₀ -Wert 571
Kettenwachstum 44, 47 f.	lebende Polymere (living polymers) 49
Kettenwachstumsreaktion 41, 65	Lebensdauer 123
Kevlar-Faser 481	Leiterpolymere 40, 488
Kicker 524	Leitfähigkeit 22
Kleben 232 ff.	Leitfähigkeitszusätze 104, 544

Lichtemittierende Polymere 22, 551 Lichtinduzierte Alterung 125 Lichtschutzmittel 124, 511 Lichtstabilisatoren 289 lineare Polyolefine 20, 249 lineare Verarbeitungs- und Nachschwindung 89 linksdrehende PLLA 561 Linters 362 Littering 583 Lösekerntechnik 176	Methacryl-imid-Gruppe 485 Methacrylnitril 393 Methacrylsäure 456 Methacrylsäuremethylester 356 Methanolyse 578 Methyl-Fluor-Siloxan-Kautschuk MFQ 505 Methylamin 359 Methylcellulose 564 Methylchlorid 525 Methylenharnstoff-Gruppe 443 Methylenmelamin-Gruppe 446
Lösemittel 145	Methylenphenol-Gruppe 438
Lösungs-Additionspolymerisation 63	Methylethylketonperoxid 453
Lösungs-Kondensationspolymerisation 63 Lösungsverfahren 53, 255	Methylmethacrylat 356 Methylmethacrylat-Acrylnitril-Butadien-Sty-
low profile (LP) 453	rol MABS 358
low shrink (LS) 453	Methylmethacrylat-Polymerisate, modifizier
lyotrop 476	te 357
	4-Methylpenten-1 281
M	α-Methylstyrol 317 MFR-Wert 90
M-Kautschuke 504	Micellen 55
m-Phenylendiamin 481	migrieren 303
M-PVC 293	Mikro-Suspensionspolymerisation 291
m-Xylylendiamin 387	mikrobieller Angriff 300
Mahlgut 577	Mikrofibrillen 88
MAK-Wert 572	Mikropräzisions-Spritzgießen 405
Makrokonformation 84	Milchsäure 525, 560
Makromoleküle 14, 36 ff., 59, 95	Milieu-Harz 453 Mischen 146
Maleinimid-Gruppe 485 Maleinsäure/cis-Butendisäure 451	mittlere Molmasse 46, 90 f.
MAP-Verpackungen 570	mittlerer Polymerisationsgrad 93
Massenfließrate 90	Modifizierung 95
Massepolymerisation-Polyvinylchlorid	– physikalische 96
M-PVC 292	- von teilaromatischen Polyamiden 390
Masterbatch 103	Molding Compounds 179, 449
Mastikation 66, 509 MC 449	Molekulargawicht 36
mechanische Bindungen 67, 74	Molekulargewicht 36 Moleküle 34, 36
mechanische Treibverfahren 198	Molmasse 36, 80, 91
Mehrkomponenten-Spritzgießen 173	Molmassenregler 351
mehrschichtige Flasche 165	Molmassenverteilung 37, 90 f.
Melamin 444	Mono-Hydroxymethylharnstoff 441
Melamin-Phenol-Formaldehyd 444	Monomer 41
Melamin-Polyester 444	Monomer casting 380
Melaminharz MF 443 Melaminharze, modifizierte 444	Morphologie 88 MuCell-Verfahren 174
Memory-Effekt 166	Mulchware 252
mesogen 476	Multiblockcopolymer 520
mesomorph 477	Multifunktionalität, smart Polymers 557
meta-Kresol 435	multimodale Molmassenverteilung 258
meta-Phenylendiamin 463	Mutagenität 571
Metallisieren 241	MVR-Wert 91
Metallocen-Katalysatoren 51 Metallocen-katalysierte Ethylencopolymere	
PE-MC 260	

Metallocen-katalysiertes Polypropylen mPP 274

N	Destan Fatancian 416
N	Pasten-Extrusion 416
Nachfalassaniahtsana 157	Pastenverarbeitung 301
Nachfolgevorrichtung 157	PC+ASA-Blends 352
nachhaltige Entwicklung 574	PC+LCP-Blends 353
Nachschwindung 89	PC+PBT-Blends 352
Nanocomposites 558	PE-HD (PE hoher Dichte) 249
Nanoröhren CNT 557	PE-LD (PE niedriger Dichte) 249, 257
Nanotechnologie 559	PE-LLD/PE-VLD (lineares PE niedriger/sehr
Nassspinnen 186	niedriger Dichte) 257
Natriumhydrogencarbonat 524	PE-MD (PE mittlerer Dichte) 249
Natriumsulfid 496	Pentan 525
Naturkautschuk NR 27, 505, 509, 511	Perfluoralkoxy-Copolymer PFA 422
Nebenvalenzbindungen 67, 70, 382	Perfluorpropylvinylether 423
Nebenvalenzkräfte 70, 113	Perkolationsgrenze 545
Newtonsches Fließgesetz 106	Permeation 121–122
Niederdruckanlage 202	Peroxid 43, 572
Niederdruckharze 430	Petrochemie 4
Niederdruckverfahren 254	petrochemische Verfahren 578
Nitril-Kautschuk 505	PE-UHMW 258
Nitrilgruppe 373, 392	Pfropfcopolymere 52 f., 520
nitrose Gase 573	Phasengrenzflächen-Verfahren 350
Nomex-Faser 481	Phasenvermittler 97
Norbornen 263	Phenol 435
Norrish-Reaktionen 125	Phenol-Formaldehyd-Harze 13, 431
Novolake 432, 435 f.	Phenol-Formaldehyd-Schaumstoffe 539
Nukleierungsmittel 88, 104, 342	Phenoplaste (Phenol-Formaldehyd-Konden-
Nylon 15, 391	sationsharze) PF 431 f.
Nylon-Rope-Trick 64	Phosgen 349
0	photoabbaubare Polymere 585 photoadressierbare Polymere 551
O	Photolacke 554
O-Kautschuke 504	Photolithographie 554
Oberflächenharze 452	Photooxidation 585
Oberflächenspannung/Oberflächenenergie	Photoresists 554
233	photosensitiv 585
Oberflächenvorbehandlung 239	Photosynthese 26
Octabins 144	Phthalsäure 452
offenzellig 196	physikalisch abbindende Klebstoffe 234
OLEDs 551	physiologische Unbedenklichkeit 289
α-Olefin 259	PICVD-Technologie 243
Olefine 249, 282	Piezo- und Pyroelektrizität 548
On-line-Lackierbarkeit 412	piezoelektrische Polymere 548
One-shot-Verfahren 533	PIR 538
opak 250	Planetenwalzenextruder 156
optische Aufheller 103 f.	Plasmabeschichten 243
organische Chemie 34	plasmainduzierte Polymerisation 58
Organisole 237	Plasmapolymerisation 58
Orientierung 97, 165	plastics 1
oxidative Kupplung 411	plastischer Zustand 1
	Plastisole 237
P	PMDI 537
B: 11 1 1 100	PMMA+ABS-Blends 359
p-Dichlorbenzol 496	PO-Schaumstoffe 528
p-Methylstyrol 317	Polarität 69, 72, 121
p-Phenylendiamin 480	Polieren 226
p.h.r. 302	Poly-2-methylpentensulfon 555
Paraffine 256	Dolar Ethan Plack Amida DEDA E22
Partikel-Schaumstoffe 526	Poly-Ether-Block-Amide PEBA 522 Polyacetale 404

Polyacetylen PAC 545 Polykondensation 41 Polyacrylester 357 Polylactid PLA 7, 560 Polyacrylnitril PAN 392 f. Polymer 37 f. Polyaddition 41 Polymer-LED 551 Polyaddukte 62 Polymer-Rohstoff 99 Polyalkylenterephthalate 340 Polymerblends (Polyblends) 96, 346, 352 - modifizierte 345 polymere Leuchtdioden PLEDs 551 Polyamid PA 59, 373 Polymere Photovoltaik PPV 552 Polymergemische 96 Polyamid-imid 484, 488 Polyanilin PANI 546 Polymerisate 42 Polyarylamid PARA 390, 485 Polymerisation 41 Polyarylate PAR 339, 473, 476 - in Emulsion 53, 55 Polyaryletherketone PAEK 470 - in Lösung 53 f. 491 Polyarylsulfone PSU, PES, PPSU - in Masse 54 Polybenzimidazol 484, 487 in Substanz 53 f. Polybismaleinimid 484, 489 - in Suspension (Perlpolymerisation) 53, Polybutadien 322, 509 Polybutylen-Adipat-Terephthalat PBAT unter Fällung 53 f. Polymerisationsgrad n 42, 65, 93 Polybutylenoxid 521 – mittlerer \overline{P} 93 Polybutylenterephthalat PBT Polymerlegierung 96-97 Polycaprolactone PCL 569 Polymermatrix 101, 322 Polycarbonat PC 19, 347 ff. Polymermolekül 37 Polycarbonat-Cokondensate Polymethacrylimid-Schaumstoffe Polymethacrylmethylimid PMMI 359, 490 Polycarbonate, modifizierte 351 Polychlortrifluorethylen PCTFE 423, 425 Polymethylmethacrylat PMMA 355 Polydiallylphthalatharz PDAP, PDAIP 465 Polymilchsäure 7, 560 Polyelektrolytmembran PEM 555 Polymorphismus 270 Polyester 17, 339 ff. Poly-m-phenylenisophthalamid PMPI 481 Polyester-Polyole 536 Polyol 533, 535 Polyol-Prepolymer Polyestercarbonat PEC 353, 474 533 Polyesterimid 484, 489 Polyolefine 249 ff. Polyesterurethan-Kautschuke 506, 513 Polyolefin-Schaumstoffe 528 Polyether-Polyole 536 Polyoxymethylen (Poyacetal) POM 18, Polyetheramid-Block-Copolymere 513, Polyoxymethylen-Polymerisate, modifizierte Polyetheretherketon PEEK 471 ff. 408 Polyetherimid 484, 489 Polyparaphenylen 546 Polyetherketon PEK 471 f. Polyparaphenylenvinylen, PPV Polyetherketonetherketonketon 472 Polyphenylchinolin 546 Polyethersulfon PES 491, 494 Polyphenylenether PPE 409 Polyphenylensulfid PPS 495, 546 Polyetherurethan-Kautschuk 506 Polyethylen PE 15, 42, 249 ff. Polyphenylensulfon PPSU 491, 494 Polyethylendioxythiophen PEDOT 553 Polyphthalamid, PPA 389 Polyethylennaphthalat PEN 346 Poly-p-phenylenterephthalamid PPTA 480 Polyethylenterephthalat PET 342 ff. Polypropylen PP 269 ff. Polyformaldehyd 403 Polypropylenglykol 536 Polyharnstoff 525, 535 Polypropylenoxid 403, 537 Polyhydroxyalkanoate PHA 567 Polypyrrol PPY 546 Polyhydroxybutyrat PHB 26 Polyreaktionen 41 Polysaccharide PSAC 362, 563 Polyimid PI 482 ff. Polyimidazole 484 Polysiloxane 465 Polyisobuten PIB 515 Polystyrol, Integralschaumstoffe Polyisocyanat 533 ff. Polystyrol PS 16, 313 ff. Polystyrol-Schaumstoffe PS-E 199, 526ff. Polyisocyanurat PIR 538 Polyisopren 509 Hartschaumstoffe 526 f. Polyketon PK 268 Integralschaumstoffe 527 Polykondensate 59 - Strukturschaumstoffe 528

Polystyrolsulfonat PSS 553 Polysulfid-Kautschuk 506 Polysulfon PSU 491 f. Polysulfone, modifizierte 494	Q Q-Kautschuk 504 Quartärkreislauf 575
Polytetrafluorethylen PTFE 70, 415 f.	Quaterpolymer 52
Polytetrafluorthylen-Copolymer 419	Quinterpolymer 52
Polytetramethylenterephthalat 344	
Polythiophen PT 546	R
Polyurethan 16, 62 f., 373, 535	-
Polyurethan-Schaumstoffe 201, 529 ff.	R-Kautschuke 504
Polyvinylalkohol PVAL 585	Radikal 43
Polyvinylchlorid PVC 13, 287 ff.	radikalische Kettenpolymerisation 43
Polyvinylchlorid-Schaumstoffe 539	Radom 458
Polyvinylfluorid PVF 422, 425	Rakel 236
Polyvinylidenchlorid PVDC 307	Ram-Extrusion 416
Polyvinylidenfluorid PVDF 422, 424, 548	Random-Copolymere 52 f.
POM-Copolymerisate 407	Rapid Prototyping (RP) 213
POM-Homopolymerisat POM-H 406	Raschelware 252
Porenstruktur 196	Rauchgasdichte 471
Powder Injection Molding PIM 176	Raumgewicht 102, 196, 523
PPE+PA-Blends 412	REACH 573
PPE+PS-Blends 411	Reaction Injection Molding 204
Prepolymer 354, 486	reactive processing 517 Reaktionsharz-Duroplaste 446 f.
Preprings 431	Reaktionsharze 430, 453
Prepregs 431 Prepregverarbeitung 192	Reaktionsharzformstoff 430
Pressen 177	Reaktionsharzmasse 453
Pressen von Thermoplasten 179	Reaktionsmittel 429
Primäracetat 362	Reaktionsschaumgießen 201, 525
Primärkreislauf 575	Reaktionsspritzgießen 525
Primärstruktur 76	Reaktionsverlauf 60
1,2,3-Propantriol (Glycerin) 537	Reaktor 53
Propylen 249	rechtsdrehende PDLA 561
Protein-Struktur 13	Recken 99, 356
Proton 34	Recyclierbarkeit 508
PS-I 321	Recycling 508, 574 ff.
PS-I + PPE Blends 331	Recyclinghierarchie 574
Pultrusion 193, 450	Recyclingkreislauf 575
Pulverbeschichten 237	Redoxreaktionen 555
Pulverlacke 458	Regenerat 577
PUR-Gießharze 466	Regler 45 Regranulat 577
PUR-Schaumstoffe 529 ff. – Halbhart-(semiflexible) Schaumstoffe	Reibungsschweißen 231
531	Reinforced-Reaction-Injection-Molding
- Hartschaumstoffe 530 f.	534
- Integral-Halbhartschaumstoffe 532	Rekombination 45
- Integral-Hartschaumstoff PUR-I 531	relative Molekülmasse 36 f.
- Weichschaumstoffe PUR-W 530	Relaxation 118
PVC Hart-Folie 182	Resit 437
Pyridin-Verfahren 349	Resitol 437
pyroelektrische Polymere 549	Resole 432 ff.
Pyrolyse 435, 578	Rezyklat 577
Pyromellithsäuredianhydrid 486	Rheologie 106
	RIM-Technik 534
	RIM-Verfahren 204, 525
	Ringmolekül 40
	Ringspaltung 42 Rohdichte 102
	MONUNCINE 102

Rohrextrusionsanlage 158	Sekundäracetat 363
Rohrreaktor 253	Sekundärbindungen 70
rohstoffliches Recycling 576 f.	Sekundarbindungen 70 Sekundärkreislauf 575
Rotationsformen 210	Sekundärstruktur 84
Rotationsgießen 210	Selbstpoliereffekt 360
Rovings 448	selbstreparierend 25
RRIM 205, 534	selbstverlöschend 289
RSG-Verfahren 201, 525	selbstverstärkend 476
RTM-Verfahren 193	Shore-Härte 506
Rückprallelastizität 508	Shore-Härtebereich 514
Rührautoklave 253	Si-Wafer 554
Rumpfladung 69	Silanvernetzung 251
	Silicone 17, 464
S	Siliconharze 464
	Siliconöl 534
Sägen 226	siliertes Polyethylen 261
Sandwich-Bauelement 203	Skinpack-Verfahren 223
Schadenverhütung/Schadensanalyse 133	Smart Structures 25
	SMC 179, 450
Schaum 102, 196, 572	
Schaumbildung 198	SMS 316
Schäumen 196	Solarzellen 552
Schaumstabilisator 534	solvolytisches Verfahren 578
Schaumstoffe 523 ff.	Sonderverfahren 172, 227
Schergeschwindigkeit 106, 110	Sonderwerkstoffe 543
Schichtpressen 177, 180	Spacer 477, 481
Schichtpressstoff 434, 444	Spannungs-Dehnungs-Diagramm 119
Schießbaumwolle 363	Spannungsrissbeständigkeit 250
Schlagzäh modifiziertes Polystyrol PS-I	Spannungsrissbildung 121
321	spezifisches Volumen 89
Schlagzähe Acrylnitril-Styrol-Formmassen	Sphärolith 87
ASA, AES, ACS 329	Spinnprozess 184
Schlagzähes PMMA-HI 358	Spinnverfahren 182
schlagzähes PP SHIPP 276	Spritz-Streckblasformen 166
Schlagzähigkeit 95, 102, 297, 321, 408	Spritzblasformen 166
Schleifen 227	Spritzgießen 167 ff.
` ' '	- von vernetzenden Polymeren 177
Schmelz-Additionspolymerisation 63	Spritzgießmaschine 168
Schmelz-Kondensationspolymerisation 63	Spritzgießwerkzeug 170–171
Schmelzefließrate 90	Spritzprägen 175
Schmelzekerntechnik 176	Spritzpressen 177 f.
Schmelzindex 90	Stabilisatoren 103, 124, 293, 572
Schmelzkondensation 64, 349	Stärkeblends 566
Schmelzspinnen 184	Stärkewerkstoffe 565
Schmelztemperaturbereich 114	statistische Copolymere 52
Schmiermittel 105	statistisches Terpolymer 268
Schnecke 153	Stereo-Kautschuk 509
Schneckenspritzgießmaschine 167	Stereolithographie (STL) 214
Schrumpfung 346	stereospezifischer Katalysator 11
Schrumpfung (Memory-Effekt) 99	Stereospezifität 50
Schub-/Scherspannung 106	sterische Konfiguration 82
Schubmodul 113	Sternmolekül 39
Schutzkolloid 291	Stoßelastizität 508
Schwanz-Schwanz-Anordnung 81	Stoffumwandlung 563
Schwefelvulkanisation 497	
	Strahlenvernetzung 246
Schweißen 227	Strahlungsschweißen 230
schwerentflammbar 289	Strangaufweitung 107
Schwindung 88	Strecken 99
Seitenketten-LCP 550	

Streichen und Gelieren von PVC-Weich-Pas-	Tetrafluorethylen 417
ten 236	Tetrafluorethylen-Hexafluorpropylen-Copo-
Streichverfahren 236	lymer FEP 422
Struktur von Gummi 13	Tetrafluorethylen-Hexafluorpropylen-Vinyli-
Struktur-Schaumstoffe (Integral-) 102	denfluorid-Terpolymer THV 422
Strukturmerkmale 75	Tetrahydrophthalsäure 452
strukturviskos 106	2,2,4,4-Tetramethyl-1,3-cyclobutandiol
Stufenwachstumsreaktion 41, 59, 65	CBDO 345
Styrofoam-Verfahren 200	Tetramethylendiamin 375
Styrol 53, 315	Textile Flächengebilde 190
Styrol mit α- bzw. p-Methylstyrol 316	Texturieren 189
Styrol-Acrylnitril SAN 319f.	thermisch-mechanisches Verhalten 112
Styrol-Butadien SB 321	thermische Nutzung 580
Styrol-Butadien-Blockcopolymer SBS 325	Thermoanalyse TA 134
Styrol-Butadien-Kautschuk 505	Thermoelaste 115, 357, 415
	Thermofixieren 189
Styrolpolymere 313 ff.	
- modifizierte 318	Thermoformen 217
Styropor-Verfahren 199, 526	Thermoformmaschine 223
subchronische Toxizität 571	Thermografie 550
Substanz 37	Thermogravimetrische Analyse TGA 134
Substanzmischung 37	Thermomechanische Analyse TMA 134
Suspendierhilfsmittel 57	Thermooptische Analyse TOA 135
Suspension 57	thermooxidative Alterung 124
Suspensions-Polyvinylchlorid S-PVC 291	thermooxidativer Abbau 66
sustainable development 574	Thermoplast-Schaum-Blasformen 525
Switchboard-Modell 86	Thermoplast-Schaum-Extrusion 525
syndiotaktisch 83	Thermoplast-Schaum-Spritzgießen 525
syndiotaktische Solystyrol PS-s 318	Thermoplaste 37, 112 f., 150
Synergismus 128	thermoplastisch verarbeitbare Fluor-Kunst-
	stoffe 420, 422, 425
Synthesegas 578	
Synthesekautschuk/Gummi 14, 27, 504 ff.	thermoplastische Elastomere auf Olefinbasis,
	TPE-O/TPE-V TPO/TPV 517
T	thermoplastische Elastomere auf Styrolbasis,
TI W	TPE-S TPS 517
T-Kautschuke 504	thermoplastische Elastomere TPE 37, 115 f.,
Tafelextrusionsanlage 159	504, 511 ff.
Tampondruck 240	thermoplastische Polyamid-Elastomere,
Tauchformen 212	TPE-A TPA 518
TDI 535	thermoplastische Polyester-Elastomere,
Technoklima 120, 123	TPE-E TPC 518
Technologie 141	thermoplastische Polyurethan-Elastomere,
Teflon 17	TPE-U TPU 519
teilaromatische Polyamide 386	thermotrop 476
teilkristallin 37, 40, 86, 113, 389	Thiole 45
teilkristalline aliphatische Polyamide 373	tie-Moleküle 87
- modfizierte 383	Tissue Engineering 560
teilkristallines Polyethylenterephthalat	Topologie 38
PET-C 342	Toxizität 571
Tempern 244	Tränken 212
Terephthalsäure 340, 387, 452	transluzent 250
Terpelymera 52, 269	transparent 250
Terpolymere 52, 268	Traubenzucker 362
Terpolymerisate 408	Treibmittel 102, 523, 533
Tertiärkreislauf 575	- chemische 523
Tertiärstruktur 85	– mechanische 523
Tetrabrombisphenol A 461	– physikalische 523
Tetrachlorbisphenol A 461	Treibverfahren, physikalische 198
Tetraedermodell 82	Trennen (Spanen) 143, 225 ff.

Trennmittel 105 Vernetzungsgrad 80 Tri-Hydroxymethylmelamin 445 Vernetzungsmittel 455, 509 Verringerung des Polymerisationsgrads 66 2,4,6-Triamino-1,3,5-triazin 444 Triazinharze 467 Verseifung 78 Triblockcopolymere 52 Verstärkungsmittel 511 Triboelektrizität 549 Verstärkungsstoffe 101, 145 Trimellithsäureanhydrid 488 Verstrecken 99, 189 2,2,4-Trimethylhexamethylen-1,6-dia-Verteiler 511 min 390 Verweilzeit 111 Trioxan 406 Verzweiger-Monomere 351 1,1,1-Tris (4-hydroxyphenyl)-ethan THPE Verzweigungsgrad 80, 257 Vinyl-Elastomere 515 TRK-Wert 572 Vinylchlorid 290 trockene Destillation 8 Vinylchlorid-Copolymerisate 294 Trockenmischungen 304 Vinylchlorid-Polymerisate, modifizierte Trockenspinnen 185 TSB-Verfahren 525 Vinylchlorid/Ethylen/Vinylacetat VCEVAC TSE-Verfahren 525 f. TSG-Verfahren 174, 525 f. Vinylchlorid/N-Cyclohexylmaleinimid 296 Vinylesterharz VE 455 Typen von Makromolekülen 39 Vinylfluorid 425 U Vinylidenchlorid VDC 308 Vinylidenchlorid-Copolymerisate 308 U-Kautschuke 504 Vinylidenfluorid 424 Vinylmonomer 43 ultrahochfeste Fasern 22 Umesterung 341, 349 Umformen 143, 217 viskos-elastisch 107 Viskose 12 Umwandlung von Naturstoffen 66 Viskosität 90, 106, 108–109 Umwelteinflüsse 120 Viskositätsfunktion 108 Umweltschutz 571, 574 Viskositätskurve 108 ungesättigte Polyesterharze UP Viskositätsskala 108 53, 446 UP-Reaktionsharzmasse 450 Volumenschwindung 89 Urethangruppe 62, 373, 535 Volumen-/Töpfchen-Modell 89 Urformen 143, 151 Vorbehandlungsverfahren 239 UV-Absorber 103, 289 Vorkondensat 442 Vorstabilisierung 293 UV-Sensibilisatoren 585 UV-Stabilisatoren 103, 449 Vortrocknen 150 Vulkanisation 12, 116, 504, 508 v Vakuumgießen 208 van der Waals-Bindungen 71 Wärmestabilisatoren 104, 293 van der Waalssche Kräfte 71 Warmformen 217 Vanadiumbasis 274 Warmgasschweißen 230 Verarbeitung 141 Warmhärtung 453 Verarbeitungsadditive 99 Wasseraufnahme 121 Verarbeitungsschwindung 89 wasserlösliche Polymere 585 Verbundwerkstoffe 101 Wasserstoffbrückenbindungen 73, 382 Veredeln 143, 238 Weißbruch 288 Veresterung 78 Weich-Polyvinylchlorid PVC-P 299, 515 Verfahrenstechnik beim Kalandrieren 181 Weichmacher 102, 145, 300 ff., 363, 383, Verfahrenstechnik der Kettenpolymerisation 411, 511 Weichschaumstoffe 532 Vergrößerung des Polymerisationsgrads 65 Weichsegment 512, 521 Vermüllung 583 weitmaschige Vernetzung Wendelstruktur (Helix) 85, 418 vernetztes Polyethylen PE-X 246 Vernetzung 60 ff., 96, 112, 429, 509 Werkstoffklassen 1 - physikalische 41, 503 werkstoffliches Recycling 576

Wiederholungseinheit 76 Wirbelmischer 147, 304 Wirbelsintern 237 Wood Plastics Composites WPC 563

X

3,5-Xylenol 435 1,3-Xylylendiamin 390

Z

z-Mittel 93 Zahlenmittel 92 Zellstoff 362 Zellstruktur 196, 523
Zerkleinern 149
Zersetzungstemperatur 68, 116
Ziegler-Natta-Katalysatoren 50, 255
Zirkonocene 274
Zucker 362
Zugdruckumformen 220
Zugspannung 117
Zugumformen 218
Zukunft der Kunststoffe 23
Zusatzstoffe 36, 99 f., 145
zwischenmolekulare Kräfte 70