Peter Nyhuis · Hans-Peter Wiendahl

Logistische Kennlinien

Grundlagen, Werkzeuge und Anwendungen

. Auflage

Logistische Kennlinien

Weitere Bände in dieser Reihe http://www.springer.com/series/3482 Peter Nyhuis • Hans-Peter Wiendahl

Logistische Kennlinien

Grundlagen, Werkzeuge und Anwendungen

3. Auflage 2012

Peter Nyhuis IFA Institut für Fabrikanlagen Leibniz Universität Hannover Garbsen Deutschland Hans-Peter Wiendahl IFA Institut für Fabrikanlagen Leibniz Universität Hannover Garbsen Deutschland

ISBN 978-3-540-92838-6 ISBN 978-3-540-92839-3 (eBook) DOI 10.1007/978-3-540-92839-3 Springer Heidelberg Dordrecht London New York

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer-Verlag Berlin Heidelberg 1999, 2003, 2012

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist eine Marke von Springer DE. Springer DE ist Teil der Fachverlagsgruppe Springer Science+Business Media www.springer-vieweg.de

Vorwort zur 3. Auflage

Das anhaltende Interesse an den Logistischen Kennlinien hat eine Neuauflage dieses Buches erfordert.

Seit dem Erscheinen der 2. Auflage im Jahre 2002 hat die Kennlinientheorie durch das Institut für Fabrikanlagen und Logistik der Leibniz Universität Hannover verschiedene Erweiterungen unter anderem im Bereich der Montage erfahren. Die Entwicklungen sind jedoch noch nicht soweit fortgeschritten und praxiserprobt, dass wir sie in eine dritte Auflage integrieren wollten.

Um die anhaltende Nachfrage befrieden zu können, haben wir uns daher entschlossen, die 3. Auflage gegenüber der 2. Auflage unverändert zu belassen und lediglich kleine Fehler in einigen Formeln und im Text korrigiert.

Die 2. Auflage enthielt einige Demonstrationsprogramme zur Berechnung von Produktions-, Lager- und Terminkennlinien sowie optimalen Losgrößen. Es handelt sich hierbei um Microsoft[©] Excel97-Anwendungen, die in Visual Basic[©] geschriebene Makros nutzen. Bei Verwendung neuerer Versionen von Microsoft[©] Windows und Excel kommt es teilweise zu Problemen bei der graphischen Darstellung der Ergebnisse. Da eine fehlerfreie Anwendung der Programme somit nicht mehr sichergestellt werden kann, haben wir uns mit großem Bedauern dazu entschlossen, die Demonstrationsprogramme nicht mehr beizufügen. Sämtliche Formeln und deren Ableitungen sind jedoch im Buch ausführlich dokumentiert und können im Bedarfsfall von den Lesern selbst programmiert werden.

In zahlreichen Seminaren, Forschungsarbeiten und Projekten hat sich die Kennlinientheorie und ihre Anwendung in Produktions- und Lagerprozessen bewährt und ist mittlerweile an vielen Hochschulen und Universitäten Bestandteil der Vorlesungen über Produktionswirtschaft, -management und -logistik. Seit 2009 steht auch eine englische Ausgabe unter dem Titel "Fundamentals of Production Logistics" zur Verfügung.

Wir wünschen unseren Lesern weiterhin Anregungen und Erkenntnisse bei der Lösung ihrer logistischen Probleme und freuen uns über Kritik und Anregungen.

Hannover Februar 2012 Peter Nyhuis Hans-Peter Wiendahl

Vorwort zur 1. Auflage

Für viele Produktionsunternehmen ist die Differenzierung ihres Angebotes gegenüber den Mitbewerbern häufig maßgeblich durch die logistischen Merkmale Lieferzeit und Liefertreue möglich. Dies erfordert die sichere Beherrschung der internen Durchlaufzeiten und der Termineinhaltung. Gleichzeitig dürfen aber auch kostenrelevante Ziele wie gleichmäßige und hohe Auslastung sowie niedrige Bestände in Roh-, Halbfertig- und Fertigwarenbeständen nicht aus dem Blick geraten. Dieses alte Dilemma der Ablaufplanung zu lösen, ist Gegenstand zahlloser Bemühungen von Wissenschaftlern und Praktikern. Große Hoffnungen wurden in den 60er Jahren in die Methoden des Operations Research, hier vor allem in die Warteschlangentheorie gesetzt, die sich aber unter den komplexen Randbedingungen der variantenreichen Einzel- und Serienfertigung nicht durchsetzen konnte. Auch die Simulation brachte wegen des hohen Aufwandes zumindest im laufenden Betrieb eines Unternehmens nicht den erhofften Durchbruch.

In dieser Situation stieß das von Prof. Hans Kettner und seinen Mitarbeitern Anfang der 70er Jahre am Institut für Fabrikanlagen der Universität Hannover entwickelte Trichtermodell und das daraus abgeleitete Durchlaufdiagramm auf großes Interesse, weil die vier Zielgrößen Durchlaufzeit, Bestand, Auslastung und Termintreue erstmals schlüssig in einer Graphik abgebildet werden konnten. Die daraus entstandene Belastungsorientierte Auftragsfreigabe und dann weiterentwickelte Belastungsorientierte Fertigungsregelung hat in der Werkstättenfertigung starke Verbreitung gefunden.

Die später im Rahmen von Simulationsuntersuchungen entwickelten Produktionskennlinien stellen die Abhängigkeit von Auslastung und Durchlaufzeit vom Bestand erstmals auch quantitativ dar. Sie waren aber zunächst auf den Einsatz in der Forschung beschränkt, weil sie aufgrund des großen Aufwandes für die Simulation nicht praxistauglich waren.

Erst Anfang der 90er Jahre gelang es mit der Dissertation von Nyhuis, diese Produktionskennlinien auf Basis eines von v. Wedemeyer vorgeschlagenen Idealmodells des Fertigungsablaufs verbunden mit experimentell und empirisch abgesicherten Untersuchungen einfach zu berechnen. Damit erschloss sich in den folgenden Jahren ein weites Anwendungsfeld für die Forschung und praktische Anwendung.

Das vorliegende Buch beschreibt erstmals in geschlossener Form die Modelle der logistischen Kennlinien für den Produktions- und Lagerprozess, leitet die Berechnungsformeln Schritt für Schritt ab und entwickelt daraus ein vergleichsweise einfaches Rechenschema, das die für die Fertigungs- und Lagersteuerung üblichen Betriebsdaten benutzt. Sorgfältige Tests mit Praxisdaten und umfangreiche Simulationsstudien zeigen den Einfluss der einzelnen Gleichungsparameter der Auftragsund Kapazitätsstruktur auf und erlauben eine Abschätzung der Aussagegenauigkeit auch bei ungenauen oder fehlerhaften Ausgangsdaten, wie sie in der Praxis oft auftreten. Die Gegenüberstellung mit der Simulation und der Warteschlangentheorie verdeutlicht die Vorteile, aber auch die Grenzen der Kennlinientheorie.

Die Brauchbarkeit der Kennlinien zeigte sich in zahlreichen wissenschaftlichen und anwendungsbezogenen Projekten des Instituts für Fabrikanlagen. Sie wurden aber auch von anderen Autoren aufgegriffen. Ihre Hauptanwendungsgebiete liegen heute in der Dimensionierung von Pufferbeständen und -flächen im Rahmen der Fabrikplanung, der logistischen Positionierung von Fertigungsbereichen und Lagerbeständen hinsichtlich Durchlaufzeit, Auslastung und Beständen, im Produktionscontrolling zur kontinuierlichen Verbesserung logistischer Zielgrößen, in der Parametrierung von Losgrößenbestimmung, Durchlaufterminierung und Auftragsfreigabe in PPS-Systemen sowie in der Engpaßorientierten Logistikanalyse zur Erschließung verborgener logistischer Potentiale für Durchlaufzeiten und Bestände. Weitere absehbare Anwendungsmöglichkeiten sind die Steuerung von Konstruktions- und Entwicklungsbereichen, die Erweiterung der Kennlinien auf das Merkmal Termintreue, die Kostenbewertung von Produktionsprozessen bei unterschiedlichen Bestandssituationen sowie die Bewertung von Lieferketten über Unternehmensgrenzen hinweg.

Dieses Buch baut auf vielen wissenschaftlichen und empirischen Arbeiten des Instituts für Fabrikanlagen auf, die teilweise zwanzig Jahre und länger zurückreichen. Hierzu zählen vor allem die Dissertationen von Bechte, Dombrowski, Dräger Erdlenbruch, Fastabend, Gläßner, Lorenz, Ludwig, Möller, Penz, Petermann, Scholtissek, Springer und Ullmann. Sie alle beschäftigten sich mit verschiedenen Aspekten der Produktionsmodellierung, -planung und -steuerung auf Basis des Durchlaufdiagramms und der Kennlinien und haben jeder für sich einen Beitrag zur Kennlinientheorie geliefert.

Unseren Lesern aus Wissenschaft und Praxis wünschen wir viele Anregungen und praktischen Nutzen bei der Bewältigung ihrer logistischen Probleme. Für konstruktive Kritik, Anregungen und Erfahrungen in der Anwendung der Kennlinientheorie sind wir dankbar.

Hannover im Sommer 1999 Peter Nyhuis Hans-Peter Wiendahl

Inhalt

1	Ein	leitung]
	1.1	Logist	ische Erfolgsfaktoren von Produktionsunternehmen	1
	1.2	Das D	ilemma der Ablaufplanung	4
	1.3	Model	llbasierter Problemlösungsprozess	6
	1.4	Zielsy	stem in der Produktionslogistik	9
	1.5	Logist	ische Kennlinien – ein Erklärungsmodell	
		für die	Produktionslogistik	11
	1.6	Zielse	tzung und Aufbau	13
2	Mod	dellieru	ngsgrundlagen	17
	2.1		richtermodell als allgemeingültiges Beschreibungsmodell für	
		Produl	ktionsprozesse	17
		2.1.1	Auftragszeit und Durchführungszeit je Arbeitsvorgang	17
		2.1.2	Durchlaufzeit	21
		2.1.3	Terminabweichung	24
	2.2	Die lo	gistischen Zielgrößen im Durchlaufdiagramm	25
		2.2.1	Leistung und Auslastung	26
		2.2.2	Bestand	27
		2.2.3	Gewichtete Durchlaufzeit und Reichweite	29
	2.3	Little's	s Law	32
	2.4	Produl	ktionskennlinien	36
3	Kla	ssische	Modelle der Produktionslogistik	39
	3.1		schlangenmodelle	41
		3.1.1	Das M/G/1-Modell	42
		3.1.2	Ermittlung von Produktionskennlinien mit Hilfe	
			der Warteschlangentheorie	46
		3.1.3	Diskussion des Modellierungsansatzes	47
	3.2	Simula	ation	49
		3.2.1	Das Simulationssystem PROSIM III	50

X Inhalt

		3.2.2	Ermittlung von Produktionskennlinien mit Hilfe der	
			Simulation	52
		3.2.3	Diskussion des Modellierungsansatzes	54
4	Able	itung e	iner Kennlinientheorie	61
-	4.1		Produktionskennlinien	62
		4.1.1	Der ideale Mindestbestand	62
		4.1.2	Die maximal mögliche Leistung	66
	4.2	4.1.3	Konstruktion idealer Kennlinien für Leistung und Zeitgrößen ung einer Näherungsgleichung zur Berechnung von	67
	4.2		ngskennlinienBerechnung zur Berechnung von	69
		4.2.1	Die C _{Norm} -Funktion als Basisfunktion berechneter	
			Leistungskennlinien	71
		4.2.2	Transformation der C _{Norm} -Funktion	73
		4.2.3	Parametrierung der Kennliniengleichung	75
	4.3		nnung von Leistungskennlinien	81
	4.4		nnung von Kennlinien für Zeitgrößen	84
	4.5		erte Produktionskennlinien	89
	4.6		nientheorie und Little's Law – eine Modellsynthese	93
	4.7	_	rüfung der Kennlinientheorie	96
		4.7.1	Simulationsgestützte Modellvalidierung	96
		4.7.2	Modellvalidierung auf der Basis	404
	4.0		von Praxisuntersuchungen	101
	4.8		erung der Kennlinientheorie	107
		4.8.1	Hierarchische Verdichtung von Produktionskennlinien	107
		4.8.2	Logistische Prozesskennlinien	110
		400	(Verfasser: DrIng. Michael Schneider)	110
		4.8.3	Arbeitssysteme mit gemeinsamen Pufferbeständen	116
	4.0	4.8.4	Berücksichtigung einer überlappten Fertigung	118
			ndungsvoraussetzungen für berechnete Produktionskennlinien	120
	4.10		nkennlinien (Verfasser: DrIng. Kwok-Wai Yu)	122
			Kennlinie der mittleren relativen Terminabweichung	122
	4 1 1		Ableitung einer Kennlinie zur Beschreibung der Termintreue	125
	4.11	Zusam	menfassung zur Ableitung der Kennlinientheorie	130
5	Gru	ndgeset	tze der Produktionslogistik	135
	5.1	Erstes	produktionslogistisches Grundgesetz	135
	5.2	Zweite	es produktionslogistisches Grundgesetz	136
	5.3	Drittes	produktionslogistisches Grundgesetz	137
	5.4	Viertes	s produktionslogistisches Grundgesetz	139
	5.5	Fünfte	s produktionslogistisches Grundgesetz	140
	5.6	Sechste	es produktionslogistisches Grundgesetz	140
	5.7		s produktionslogistisches Grundgesetz	142
	5.8		produktionslogistisches Grundgesetz	143
	5.9	Neunte	es produktionslogistisches Grundgesetz	143

Inhalt XI

5	Anv	vendun	g der Kennlinientheorie	145
	6.1	Erstell	lung und Analyse berechneter Produktionskennlinien	145
		6.1.1	Kennlinienberechnung	146
		6.1.2	Kennliniengestützte Analyse eines simulativ erzeugten	
			Produktionsablaufes	149
	6.2	Bewer	tung alternativer Ansätze zur Erschließung logistischer	
		Ration	nalisierungspotentiale	152
		6.2.1	Variation der Auftragszeitstruktur	153
		6.2.2	Variation der Kapazitätsstruktur	155
	6.3	Berecl	hnung von Produktionskennlinien bei fehlenden oder fehlerhaft	en
		Betrie	bsdaten	156
		6.3.1	Fehlerhafte Auftragszeitstruktur- und Transportzeitdaten	157
		6.3.2	Fehlende oder fehlerhafte Angaben zur maximal möglichen	
			Leistung	160
		6.3.3	Fehlerhafter Streckfaktor α ₁	164
	6.4	Auswi	rkungen instationärer Prozesszustände auf die Erstellung	
			terpretation von Produktionskennlinien	166
		6.4.1	Zeitliche Veränderung der Auftragszeitstruktur	166
		6.4.2	Zeitliche Veränderungen des Bestandsniveaus	168
	6.5	Einsat	zmöglichkeiten von Produktionskennlinien bei der Gestaltung	
			enkung von Produktionsprozessen	172
		6.5.1	Logistische Positionierung	175
		6.5.2	Einsatz von Kennlinien im Rahmen des	
			Produktionscontrolling	179
		6.5.3	Logistikorientierte Gestaltung und Parametrierung von	
			Planungs- und -steuerungsstrategien	181
		6.5.4	Logistikorientierte Gestaltung von Produktionsstrukturen	188
_	_			100
7	_		ientierte Logistikanalysen in der Praxis	193
	7.1		neine Ablaufschritte bei einer Engpassorientierten	100
		_	ikanalyse	193
		7.1.1	Kennzahlermittlung	194
		7.1.2	Ermittlung logistisch relevanter Arbeitssysteme	195
		7.1.3	Generelle Vorgehensweise zur Auswahl von Maßnahmen	199
	7.2		ndung der Engpassorientierten Logistikanalyse in einer	
			plattenfertigung	202
		7.2.1	Zielsetzung der Analyse	202
		7.2.2	Datenerfassung	203
		7.2.3	Auftragsdurchlaufanalyse	204
		7.2.4	Arbeitssystemanalysen	209
		7.2.5	Quantifizierung der logistischen Rationalisierungspotentiale	222
		7.2.6	Anwendungserfahrungen	226
	7.3		ndung der Engpassorientierten Logistikanalyse	
		in eine	er Leiterplattenbestückung	226

XII Inhalt

		7.3.1	Ermittlung der durchlaufzeitbestimmenden	227
		722	Arbeitssysteme	227
		7.3.2	Abschätzung vorhandener logistischer	220
		7.2.2	Rationalisierungspotentiale	228
		7.3.3	Ableitung und Umsetzung arbeitssystemspezifischer	220
		7.0.4	Maßnahmen	230
	- ·	7.3.4	Zusammenfassung der Anwendungserfahrungen	237
	7.4	Einfuh	rungsstrategien für die Engpassorientierte Logistikanalyse	238
8	Anw	endung	g der Kennlinientheorie für Lagerprozesse	241
	8.1	Das D	burchlaufdiagramm als Prozessmodell für die	
		bescha	ffungslogistische Prozesskette	242
	8.2	Lagerk	rennlinien	244
	8.3	Simula	ationsgestützte Ermittlung von Lagerkennlinien	247
	8.4	Ermitt	lung von Lagerkennlinien mit Hilfe	
			Väherungsgleichung	248
		8.4.1	Die ideale Lagerkennlinie	250
		8.4.2	Berücksichtigung von Planabweichungen	253
		8.4.3	Parametrierung der Näherungsgleichung	260
		8.4.4	Simulationsgestützte Überprüfung berechneter	
			Lagerkennlinien	263
	8.5	Anwen	ndungsmöglichkeiten	265
	8.6		ndungsfelder und -grenzen	
	8.7		ndungsbeispiel der Lagerkennlinientheorie zur	
	0.,		antenbeurteilung	270
			•	
9			g der Kennlinientheorie in der Lieferkette	275
	9.1	_	ößen in der Lieferkette	275
		9.1.1	Der gewichtete Servicegrad	276
		9.1.2	Näherungsgleichung einer Kennlinie für den gewichteten	
			Servicegrad	277
	9.2	Zusam	menhänge logistischer Parameter in der Lieferkette	280
	9.3	Beispie	el der logistischen Analyse einer Lieferkette	282
		9.3.1	Logistische Lageranalyse des Erzeugnislagers	
			des Herstellers	283
		9.3.2	Logistische Engpassanalyse der Produktion	
			des Herstellers	289
		9.3.3	Logistische Lageranalyse des Eingangslagers	
			des Herstellers	291
		9.3.4	Engpassorientierte Logistikanalyse der Produktion des	
			Zulieferers	292
		9.3.5	Gesamtpotential in der Lieferkette	292
	9.4		menfassung zur Anwendung der Kennlinientheorie in der	-/-
	<i>/</i> · · ·		kette	294

Inhalt	XIII
10 Zusammenfassung und Ausblick	297
Literatur	299
Sachverzeichnis	309

Verzeichnis der im Text verwendeten Abkürzungen und Formelzeichen

Allgemeine Merkmale (Index oder nachführende Bezeichnung)

Zeichen Bedeutung

EP	Engpassarbeitssystem
i, j	Allgemeine Laufvariablen
m	Mittelwert
med	Medianwert
mg	Mittlerer gewichteter Wert
max	Maximalwert
PZK	Prozeßkette
S	Standardabweichung
V	Variationskoeffizient
(t)	Mit Hilfe der Kennlinientheorie berechneter Mittelwert
	(als Funktion des Laufparameters t)
(T)	Wert einer Größe zum Zeitpunkt T
(s)	Sollwert eines Kenngröße (z. B. ZDL(s): Durchlaufzeit Soll)

Dimensionsangaben

Einheit	Bedeutung
ANZ	Anzahl
BKT	Betriebskalendertag
ME	Mengeneinheiten (allgemein; z. B. Stk; m ² ; kg)
Std	Stunden
Stk	Stück
$Std \cdot BKT$	Flächenangabe (Stunden · Betriebskalendertag)
%	Prozent

Formelzeichen

Zeichen	(Einheit)	Bedeutung
a	(-)	Untere Intervallgrenze (Terminkennlinie)
A	(%)	Auslastung
AB	(Std)	Abgang an Arbeit
ANZ	(-)	Anzahl
b	(-)	Obere Intervallgrenze (Terminkennlinie)
В	(Std)	Bestand
B_B	(Std)	mittlerer Bestand bei Auftragsbearbeitung
B_P	(Std)	mittlerer Pufferbestand
B_{rel}	(%)	Relativer Bestand
BA	(-)	Bestand (in Anzahl Aufträgen)
BI_{min}	(Std)	Idealer Mindestbestand
BIA	(-)	Idealer Mindestbestand (in Aufträgen)
$BKAP_V$	(Std/BKT)	Verfügbare Betriebsmittelkapazität
BL	(ME)	Lagerbestand
BL_0	(ME)	Unterer Grenzwert des Lagerbestandes
BL_1	(ME)	Erweiterter Grenzwert des Lagerbestandes
BL_S	(ME)	Sicherheitsbestand
BR	(ME/BKT)	Bedarfsrate
C	(-)	Funktionsparameter der C _{Norm} -Funktion
EPS	(%)	Einlastungsprozentsatz
F	(BKT)	Durchlaufzeit (Little's Law)
FBL	$(ME \cdot BKT)$	Lagerbestandsfläche
FB	$(Std \cdot BKT)$	Bestandsfläche
FG	(-)	Flußgrad
FZ	$(Std \cdot BKT)$	Durchlaufzeitfläche
F_{BL}	$(ME \cdot BKT)$	Lagerbestandsfläche
F_{FM}	$(ME \cdot BKT)$	Fehlmengenfläche
KAP	(Std/BKT)	Kapazität
L	(Std/BKT)	Leistung
L_{max}	(Std/BKT)	Maximal mögliche (mittlere) Leistung
LA	(ME/BKT)	Lagerabgangsrate
LA	(1/BKT)	Leistung (in Anzahl Aufträge) (Prozesskennlinie)
LV	(BKT)	Lieferverzug Lagerabgang
LV_0	(BKT)	Grenzlieferverzug
LV_1	(BKT)	Erweiteter Grenzlieferverzug
m	(-)	Anzahl Arbeitsstationen (Little's Law; Warteschlangen- modelle)
m	(-)	Anzahl pünktlich bedienter Nachfragen (Servicegrad)
MAB	(ME)	Lagerabgangsmenge (Lagerkennlinien)
M_{NA}	(ME)	Auftragslosgröße je Nachfrage
M_{NAP}	(ME)	Auftragslosgröße pünktlich bedienter Nachfragen

n	(-)	Anzahl auszuwertender Ereignisse
N	(-)	Anzahl Aufträge im System (Little's Law)
p		Auftragszeit (Little's Law); Dimensionsangabe
r		vom Anwendungsfall anhängig (z. B. min/Std)
P	(BKT)	Bezugszeitraum (Periode)
Pü	(-)	Materialflusskoeffizient
$PKAP_N$	(Std/BKT)	Nutzbare Personalkapazität
SG	(-)	Servicegrad
R	(BKT)	Reichweite
t	(-)	Laufvariable in der Kennlinientheorie ($0 \le t \le 1$)
$t_{\rm e}$	(min/ME)	Einzelzeit je Mengeneinheit (Vorgabezeit)
t_r	(min)	Rüstzeit je Arbeitsvorgang (Vorgabezeit)
TA	(BKT)	Terminabweichung
TA^+	(BKT)	Positive Terminabweichung (Verzögerung)
TA^-	(BKT)	Negative Terminabweichung (Vorzeitige Auslieferung)
TAA	(BKT)	Terminabweichung Abgang
TAR	(BKT)	Relative Terminabweichung
TAZ	(BKT)	Terminabweichung Zugang
TAB	(BKT)	Bearbeitungsanfang Auftrag (Auftragseinstoß)
TAE	(BKT)	Bearbeitungsende Auftrag
TBE	(BKT)	Termin Bearbeitungsende eines Arbeitsvorganges
TBEV	(BKT)	Termin Bearbeitungsende des Vorgänger-Arbeitsvorganges
TT	(%)	Termintreue
U	(Std/BKT)	Leistung einer Arbeitsstation (Little's Law)
WBZ	(BKT)	Wiederbeschaffungszeit
X	(ME)	Losgröße
X_{AB}	(ME)	Lagerabgangsmenge je Abgangsereignis
X_{ZU}	(ME)	Lagerzugangsmenge je Zugangsereignis
Z	(-)	Anzahl Zeitabschnitte im Bezugszeitraum
ZAU	(Std)	Auftragszeit (Vorgabestunden)
ZDA	(BKT)	Durchlaufzeit Auftrag
ZDF	(BKT)	Durchführungszeit (Arbeitsvorgang)
ZDL	(BKT)	Durchlaufzeit (Arbeitsvorgang)
ZG	(BKT)	Zeitgrad
ZL	(BKT)	Lagerverweilzeit
ZTR		Transportzeit; Dimensionsangabe vom
		Anwendungsfall abhängig (z. B. min; Std; BKT)
ZU	(Std)	Zugang
ZUE	(BKT)	Übergangszeit (Arbeitsvorgang)
ZW		Mittlere Wartezeit (Warteschlangenmodell);
		Dimensionsangabe vom Anwendungsfall abhängig (z. B.
		min; Std; BKT)