
Friedrich Ostermann

Anwendungstechnologie Aluminium

2., neu bearbeitete und aktualisierte Auflage

🖄 Springer

trímet

VDI

Friedrich Ostermann

Anwendungstechnologie Aluminium

Friedrich Ostermann

Anwendungstechnologie Aluminium

2., neu bearbeitete und aktualisierte Auflage

Mit 577 Abbildungen und 111 Tabellen

Professor Dr.-Ing. Friedrich Ostermann

Aluminium Technologie-Service, Meckenheim ostermann@aluminiumtechnologie.de

Autor und Verlag danken der TRIMET ALUMINIUM AG, Essen, für die Unterstützung der Drucklegung dieses Buches.

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-540-71196-4 2. Auflage Springer Berlin Heidelberg New York ISBN 3-540-62706-5 1. Auflage Springer Berlin Heidelberg New York

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Springer ist ein Unternehmen von Springer Science+Business Media springer.de

© Springer-Verlag Berlin Heidelberg 1998, 2007

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Buch berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Sollte in diesem Werk direkt oder indirekt auf Gesetze, Vorschriften oder Richtlinien (z. B. DIN, VDI, VDE) Bezug genommen oder aus ihnen zitiert worden sein, so kann der Verlag keine Gewähr für die Richtigkeit, Vollständigkeit oder Aktualität übernehmen. Es empfiehlt sich, gegebenenfalls für die eigenen Arbeiten die vollständigen Vorschriften oder Richtlinien in der jeweils gültigen Fassung hinzuzuziehen.

Satz: Marianne Schillinger-Dietrich, Berlin Herstellung: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig Einbandgestaltung: WMXDesign, Heidelberg Gedruckt auf säurefreiem Papier 68/3180/YL – 5 4 3 2 1 0

Vorwort zur 2. Auflage

Seit dem Erscheinen der 1. Auflage von ANWENDUNGSTECHNOLOGIE ALUMINIUM im Jahre 1998 haben sich zahlreiche Entwicklungen in der Aluminiumkunde und Anwendungsforschung, im Einsatz des Werkstoffs und im wirtschaftlichen Umfeld der Hersteller und Verarbeiter vollzogen, denen bei der Neuauflage des Buches Rechnung getragen werden soll. Gleichzeitig bietet der kritische Rückblick auf die damalige Themenauswahl die Möglichkeit, die Schwerpunkte an den sichtbar gewordenen Entwicklungstrends neu auszurichten.

Einerseits haben sich durch die Forderungen aus der Anwendungspraxis, aber auch durch die Weiterentwicklung von wissenschaftlichen Methoden und theoretischen Erkenntnissen in jüngster Zeit neue Einsichten und Perspektiven bei den Aushärtungsprozessen ergeben, die als wohl die wichtigste metallurgische Grundlage für Aluminiumkonstruktionswerkstoffe anzusehen sind, und deren Entdeckung vor genau 100 Jahren von Alfred Wilm patentiert wurde. In der Anwendungsforschung werden Konzepte für die Vorhersage des Verhaltens unter Crash-Bedingungen und Schwingbeanspruchung entwickelt, die zunehmend die metallphysikalischen Basisprozesse des plastischen Fließens und Bruchs einschließen. Daher wurde den metallkundlichen Prozessen ein breiterer Raum eingeräumt in der Absicht, durch verständliche Beschreibung die z.T. sehr komplexen Vorgänge im Werkstoff für den mit Anwendungsentwicklungen befaßten Werkstoffingenieur zugänglich zu machen. Im Vordergrund steht eine möglichst umfassende Dokumentation der beobachteten Phänomene des Werkstoffverhaltens und weniger dessen rechnerische Simulation, die anderen Werken* vorbehalten sein mögen. Berechnungskonzepte sind nur dann wirklich zuverlässig, wenn sie mit den metallphysikalischen Vorgängen in Einklang stehen.

Andererseits ist in den vergangenen Jahren die Akzeptanz des Aluminiums als Leichtbauwerkstoff für den Fahrzeugbau so weit gestiegen, daß jeder Automobilhersteller heute Teile, Baugruppen oder vollständige Ka-

^{*)} z.B. Hirsch, J. (Hrg.): Virtual Fabrication of Aluminium Products. Microstructural Modeling in Industrial Aluminium Production. Weinheim: Wiley-VCH Verlag, 2006

rosserien aus diesem Werkstoff baut, ohne dessen generelle Tauglichkeit mehr in Frage zu stellen. Die gewonnenen Erfahrungen und das Interesse der Automobilindustrie sind deshalb auch die treibende Kraft für zahlreiche Entwicklungen und Innovationen in den Verarbeitungstechnologien, eine Rolle, die früher vor allem von der Luft- und Raumfahrtindustrie wahrgenommen wurde. Hinter all diesen Entwicklungen steht die Frage nach der Wirtschaftlichkeit solcher Anwendungen in einem wettbewerbsorientierten Markt, d.h. die Senkung der Verarbeitungskosten durch intelligente Vermeidung unnötiger Verarbeitungsschritte. Auch dieser Lösungsweg verlangt nach detaillierten Kenntnissen des Werkstoffverhaltens, das in der Beschreibung technologischer Verarbeitungsprozesse gegenüber der 1. Auflage des Buches stärker betont wird.

Sorge bereitet die Kontinuität innovationsträchtiger Forschungs- und Entwicklungsarbeit. In jüngster Zeit hat sich ein struktureller Wandel in der deutschen Aluminiumindustrie eingestellt mit problematischen Folgen für Forschung und Innovation und damit letztlich für die Zukunft der Aluminiumindustrie in Deutschland. Mengenmäßig ist der deutsche Aluminiummarkt der größte in Europa und erreicht technologisch die größte Verarbeitungstiefe. Um so besorgniserregender ist der Umstand, daß die Industrie- und Wirtschaftspolitik der vergangenen Jahre bis in die Gegenwart zu einem Ausverkauf der Aluminiumhüttenindustrie geführt hat, die Initiator und wichtigster Förderer der Aluminiumforschung und Anwendungsentwicklung in diesem Lande war. Die Wertschöpfung in der Primärerzeugung war immer die wichtigste finanzielle Grundlage für die Aluminiumforschung. Mit der Übernahme der nationalen Aluminiumkonzerne durch ausländische Konzerne wandert die industriedominierte Aluminiumforschung als Quelle von Innovationen ab oder wird durch ausländische Forschungszentralen fremdgesteuert. Die notwendige Nähe des Forschers zum Anwender schwindet. Die für diesen Industriestandort fatale Energiepolitik in Vergangenheit und Gegenwart hat das Schließen zahlreicher Aluminiumhütten zu verantworten. Um so beachtenswerter ist die jüngste Initiative eines Privatunternehmers, eine bereits geschlossene Aluminiumhütte zu übernehmen und weiter zu betreiben.

Die Rolle der Primärhütten kann durch die Sekundärhüttenindustrie nicht aufgefangen werden, die Wertschöpfung ist geringer und die Versorgungsbasis zu volatil. Ob ohne direkte und kontinuierliche Industriebeteiligung die Aluminiumforschung an den Hochschulen und anderen Forschungseinrichtungen aufgefangen werden kann, ist zweifelhaft, da die Kontinuität von Wissen und Erfahrung dort nicht gewährleistet werden kann. Ein Ausweg wäre ein ausschließlich der Aluminiumforschung und lehre gewidmeter Lehrstuhl. Zu denken gibt weiterhin, daß schon heute die aktive Beteiligung von Aluminiumfachleuten an der Steuerung der nationalen Industriellen Gemeinschaftsforschung und der internationalen

nalen Industriellen Gemeinschaftsforschung und der internationalen Normungsarbeit alles andere als lebhaft ist, und dadurch weder die eigenen Erfahrungen eingebracht noch die eigenen Interessen vertreten werden können. Es ist zu hoffen, daß die mittelständische Aluminiumindustrie diese Rolle als gemeinschaftliche Aufgabe zur Zukunftssicherung übernimmt.

Ich hoffe, daß das Buch dazu beiträgt, über den fachlichen Diskurs hinaus die Faszination der Beschäftigung mit diesem Werkstoff auf Lehrende, Lernende und im Beruf stehende Ingenieure auszustrahlen. Das Potential des Werkstoffs ist keineswegs ausgeschöpft, und phantasievolle Kreativität, Nutzung und Fortentwicklung der Aluminium-Anwendungstechnologien werden den Erfolg bei heutigen und künftigen Produkten gewährleisten.

Mein herzlicher Dank gilt allen Kolleginnen und Kollegen, die durch Informationen, Diskussionen und Bildmaterial zu diesem Buch beigetragen haben, Herrn Gerd Bulian für das fachkritische Lesen des Manuskriptes sowie meiner Frau für ihre Geduld, Ermutigung und liebevolle Unterstützung.

Meckenheim, im Januar 2007

Friedrich Ostermann

Inhalt

Ta	Γabellenverzeichnis			XVII
1	Ein	fiihrur	ng	1
_	1.1		Vettbewerb der Werkstoffe in den Märkten	
			ationsgrundlagen	
			g	
2	Mä	rkte ur	nd Anwendungen	9
	2.1	Alum	inium im Automobilbau	10
		2.1.1	Aluminium im Antriebsbereich	13
		2.1.2	Aluminium im Fahrwerksbereich	22
		2.1.3	Aluminium im Karosseriebau	27
	2.2	Alum	inium im Nutzfahrzeugbau	41
	2.3	Alum	inium im Schienenfahrzeugbau	46
		2.3.1	Entwicklung aluminiumgerechter Baukonzepte	47
		2.3.2	Aluminiumwerkstoffe für die Schienenfahrzeugbau	51
		2.3.3	Schweißverbindungen im Schienenfahrzeugbau	53
	2.4	Alum	inium im Schiffbau	
	2.5	Alum	inium im Flugzeugbau	61
	2.6	Archi	tektur und Ingenieurbau	67
	2.7	Sonst	ige Anwendungsmärkte	72
		2.7.1		
		2.7.2	Elektrotechnik	74
		2.7.3	Verpackung	75
3	Leg	ierung	saufbau, Wärmebehandlung, Normen	79
_	3.1		gebausteine der Aluminiumwerkstoffe	
		3.1.1	Gefügematrix	
		3.1.2	Gitterfehler	
		3.1.3	Korngrenzen	
		3.1.4	Mischkristallbildung	
		3.1.5	Primärphasen (Gußphasen)	100
		3.1.6	Sekundärphasen	
		3.1.7	Warmverformungs-, Faser-, Erholungs-	
			und Rekristallisationsgefüge	110
		3.1.8	Poren	
		3.1.9	Oxideinschlüsse	
	3.2	Aufba	uu und Wärmebehandlung der Knetwerkstoffe	

		3.2.1	Unlegiertes Aluminium	113
		3.2.2	AlMn-Legierungen	
		3.2.3	AlMg(Mn)-Legierungen	
		3.2.4	AlCu(Mg,Si)-Legierungen	
		3.2.5	AlMgSi-Legierungen	
		3.2.6	AlZnMg(Cu)-Legierungen	
		3.2.7	Sonstige Knetlegierungen	
		3.2.8	Durchführung von Wärmebehandlungen	
	3.3		rungsaufbau und Wärmebehandlung von Gußlegierungen	
	3.5	3.3.1	Schmelze und Schmelzereinigung	
		3.3.2	Erstarrungsvorgang (Kristallisation)	
		3.3.3	Erstarrungsfehler	
		3.3.4	Fließ- und Formfüllungsvermögen	
		3.3.5	Aluminium-Gußlegierungen	
		3.3.6	Verarbeitungs- und Anwendungshinweise	201
		3.3.7	Gießgerechte Gestaltung	
	2 /		hrung in die Normen über Aluminiumlegierungen	
	3.4	3.4.1	Einführung in die Bezeichnungssysteme der Aluminium-	209
		3.4.1	werkstoffe	210
		3.4.2	Bezeichnungssystem für Knetlegierungen und deren	210
		3.4.2	Werkstoffzustände	212
		3.4.3	Bezeichnungssystem für Formgußlegierungen, Gießver-	212
		3.4.3	fahren und für die Werkstoffzustände von Formgußteilen	215
		3.4.4	e	
		3.4.4	Halbzeugnormen.	
		3.4.6	Garantierte und typische Eigenschaften	
		3.4.0	Legierungsauswahl – frei oder eingeschränkt?	220
4	Phy	sikalis	che Eigenschaften	221
•	4.1		kalischen Eigenschaften des Aluminiums	
		4.1.1		
			Elektrische Leitfähigkeit	
		4.1.3	Magnetische Eigenschaften	223
			Wärmeleitfähigkeit	
			Reflexions- und Emissionseigenschaften	
	42		kalische Eigenschaften von Aluminiumoxid	
	7.2	1 11y 311	Runsene Ligensenaten von Munimuniozia	223
5	Kor	rosion	sverhalten von Aluminium	227
			meine Grundlagen	
			Einflüsse auf das Korrosionsverhalten	
			Korrosionsverhalten von Aluminium in Freibewitterung	
			und Meerwasser	229
	5.2	Oxids	chicht und Korrosionsmechanismus des Aluminiums	
	٠.٢	5.2.1	Aufbau und Bedeutung der Oxidschicht	
		5.2.2	Verstärkung der natürlichen Oxidschicht	
		5.2.3	Beständigkeit der Oxidschicht	
			Korrosionsmechanismus	236

		5.2.4	Freie und kritische Korrosionspotentiale	238
		5.2.5	~	241
	5.3	Einflu	ß der Legierungselemente	242
		5.3.1		242
			Korrosionsbeständigkeit	243
	5.4	Ersch	einungsformen der Korrosion bei Aluminium und seinen	
		Legie	rungen	246
		5.4.1	Lochkorrosion (LK)	246
		5.4.2	Selektive Korrosion (SK)	248
		5.4.3	Spannungsrißkorrosion (SpRK)	252
		5.4.4	Interkristalline Korrosion unter Spannung	255
		5.4.5	Spaltkorrosion	256
		5.4.6	Kontaktkorrosion	258
		5.4.7	Korrosionsermüdung	263
		5.4.8	Reibkorrosion	271
		5.4.9	Filiformkorrosion	272
	5.5	Beisp	iele für korrosionsgerechtes Konstruieren	272
6	Me	chanisc	che Eigenschaften	279
	6.1	Statis	che mechanische Kennwerte	280
	6.2		curve, Verfestigung, Anisotropie, Verformbarkeit	286
	6.3	Bruch	vorgang und Bruchverhalten	298
	6.4	Schwi	ingfestigkeitsverhalten von Aluminiumwerkstoffen	318
		6.4.1		321
		6.4.2	Zyklisches Spannungs-Dehnungsverhalten	334
		6.4.3	Rißfortschrittsverhalten	337
		6.4.4	Dehnungs-Wöhlerkurve (ε/N-Kurve)	344
		6.4.5	Spannungs-Wöhlerkurve (S/N-Kurve)	350
		6.4.6	Langzeitfestigkeit ("Dauerfestigkeit") von Aluminium-	
			werkstoffen	353
		6.4.7	Mittelspannungsempfindlichkeit	355
		6.4.8	Einfluß von Kerben auf die Schwingfestigkeit	359
		6.4.9	Wirkung von Eigenspannungen auf die Schwing-	
			festigkeit	364
	6.5	Einflu	ıß hoher Dehngeschwindigkeit	368
	6.6	Verha	lten bei unterschiedlichen Temperaturen	376
		6.6.1	Elastizitätsmodul bei unterschiedlichen Temperaturen	377
		6.6.2	Mechanische Eigenschaften bei tiefen Temperaturen	378
		6.6.3	Mechanische Eigenschaften bei höheren Temperaturen	380
		6.6.4	Umformbarkeitseigenschaften bei höheren Temperaturen	384
	6.7	Einflu	ıß des Spannungszustands	388
		6.7.1	Fließbedingungen (Fließhypothesen)	388
		6.7.2	Fließortkurven	391
		6.7.3	Grenzformänderung bei ebenem Spannungszustand	394
		6.7.4	Einfluß der Mehrachsigkeit auf die Duktilität	397

_	C:-	06-1	200		
7		Bverfahren	399		
	7.1	Stranggießverfahren	399		
		Formgießverfahren	402		
	7.3	Vergleich der Formgießverfahren	419		
8	Walzen				
	8.1	Walzprozeß	423		
	8.2	Qualitätsmerkmale von Warm- und Kaltwalzblechen	425		
	8.3	Oberflächenbeschichtete Walzfabrikate	430		
		Verbundhalbzeuge	432		
		Ç			
9	Stra	nngpressen	435		
	9.1	Strangpreßverfahren	436		
	9.2	Grundformen von Profilen und Werkzeugen	439		
	9.3	Strangpreßbarkeit von Aluminiumlegierungen	440		
	9.4	Prozeßkette im Strangpreßwerk	444		
	9.5	Strangpreßgerechte Profil- und Werkzeuggestaltung	446		
	9.6	Gestalten von Strangpreßprofilen	450		
	···	9.6.1 Funktionalitätsgruppen	450		
		9.6.2 Konstruktionen mittels Profilverbindungen	452		
	9.7	Sonderverfahren des Strangpressens von Aluminium	455		
	7.1	9.7.1 Strangpressen nach dem "Conform"-Verfahren	455		
		9.7.2 Hydrostatisches Strangpressen	455		
		9.7.3 Verbundstrangpressen	456		
		9.7.4 Warmbiegen von Profilen beim Preßvorgang	456		
		7.7.4 Warmbiegen von Fromen beim Freuvorgang	750		
10	Sch	Schmieden von Aluminium			
	10.1	Prozeß des Gesenkschmiedens	460		
	10.2	Schmiedegesenke	462		
	10.3	Stofffluß und Faserverlauf	464		
	10.4	Schmiedelegierungen, Vormaterial, Gefüge und Arbeitsablauf	467		
		Gestalten von Schmiedeteilen	473		
11		tfließpressen von Aluminium	475		
		Charakteristische Merkmale von Kaltfließpreßteilen	475		
	11.2	Aluminium für technische Fließpreßteile	477		
		11.2.1 Vormaterial: Butzen	477		
		11.2.2 Aluminiumlegierungen für das Kaltfließpressen	479		
		11.2.3 Alternative Ausgangszustände für das Kaltfließpressen	481		
	11.3	Fließpreßverfahren	484		
		11.3.1 Grundverfahren des Fließpressens	484		
		11.3.2 Werkzeuge für das Kaltfließpressen	487		
		11.3.3 Kraftbedarf beim Kaltfließpressen	487		
			40:		
12		miniumblechumformung	491 492		
	14.1	WEIKSTOTICIZEDISCHARTEN IUI UIE DIECHUMMOHMUNZ	492		

	12.1.1 Werkstoffeigenschaften aus Zugversuchen	492
	12.1.2 Werkstoffeigenschaften aus technologischen Prüfungen	493
	12.1.3 Biegefähigkeit	502
	12.1.4 Rückfederung	509
	12.1.5 Aluminiumlegierungen für Karosserieanwendungen	511
	12.2 Tribologisches Verhalten	516
	12.2.1 Reibungsmechanismus	516
	12.2.2 Das Tribosystem Blech-Werkzeug-Schmierstoff	518
	12.3 Scherschneiden	525
	12.3.1 Trennvorgang beim Normalschneiden	526
	12.3.2 Genauschneiden	531
	12.3.3 Feinschneiden	533
13	Sondergebiete der Umformtechnik	535
	13.1 Weiterverarbeitung von Profilen und Rohren	535
	13.1.1 Biegen und Biegeverfahren	536
	13.1.2 Örtliche Querschnittsänderungen	542
	13.1.3 Innenhochdruckumformen	545
	13.2 Halbwarmumformen	547
	13.3 Superplastische Umformung	549
	13.3.1 Mechanismen und Werkstoffe	549
	13.3.2 Verfahren der superplastischen Blechumformung	552
14	Spanende Formgebung von Aluminium	555
	14.1 Spanbildung	556
	14.2 Spanformen bei Aluminiumwerkstoffen	559
	14.3 Aluminiumwerkstoffe für Zerspanungszwecke	561
	14.4 Zerspanbarkeit	564
	14.5 Werkzeugverschleiß	565
	14.6 Schneidwerkstoffe für die Aluminiumzerspanung	568
	14.7 Kühlschmierstoffe	570
	14.8 Oberflächen spanend bearbeiteter Al-Werkstoffe	572
	14.9 Funkenerosive Bearbeitung	573
	C	
15	Oberflächenbehandlung	577
	15.1 Reinigungsprozeß	579
	15.2 Vorbehandlung	582
	15.3 Beschichtungen	583
	15.3.1 Anodische Oxidation	583
	15.3.2 Metallische Beschichtungen aus wäßrigen Lösungen	586
		700
	15.3.3 Verschleißfeste Oberflächen durch thermisches Spritzen	588
	15.3.3 Verschleißfeste Oberflächen durch thermisches Spritzen 15.3.4 Beschichten mit organischen Stoffen (Lackieren)	588 588
16	15.3.4 Beschichten mit organischen Stoffen (Lackieren)	588
16	15.3.4 Beschichten mit organischen Stoffen (Lackieren) Schmelzschweißen von Aluminium	588591
16	15.3.4 Beschichten mit organischen Stoffen (Lackieren)	588

	16.3 Schmelzschweißverfahren für Aluminium	607
	16.3.2 Strahlschweißverfahren	616
	16.4 Schweißimperfektionen	621
17	Widerstandsschweißen	625
1/	17.1 Widerstandspunktschweißen (WPS)	625
		625
	17.1.1 Verfahrensprinzip	
	17.1.2 Übergangswiderstände der Fügeteiloberfläche	627
	17.1.3 Elektrodenverschleiß und Elektrodenreinigung	629
	17.1.4 Schweißeignung von Legierungen	630
	17.1.5 Maschinen und Elektroden	630
	17.1.6 Festigkeitsverhalten von Aluminium-WPS-Verbindungen	634
	17.2 Buckelschweißen	636
18	Mechanisches Fügen	639
	18.1 Merkmale mechanischer Fügetechniken	639
	18.2 Durchsetzfügen	642
	18.3 Nieten	646
	18.3.1 Vollniete	647
	18.3.2 Blindniete	647
	18.3.3 Schließringbolzen.	648
	18.3.4 Stanzniet	649
	18.4 Schraubverbindungen	652
	18.5 Festigkeitseigenschaften mechanisch gefügter Verbindungen	655
10	Sonderverfahren der Fügetechnik	659
17	19.1 Rührreibschweißen (Friction Stir Welding / FSW)	659
	19.2 Reibschweißen	664
		668
	19.3 Explosivschweißen	
	19.4 Hartlöten	669
20	Einführung in das Konstruieren mit Aluminium	677
	20.1 Gestaltungsgrundsätze	677
	20.2 Elastizitätsmodul und Leichtbau	680
	20.3 Schweißkonstruktionen	686
	20.3.1 Grundsätze zur Gestaltung von Schweißverbindungen	686
	20.3.2 Eigenspannungen in Schweißverbindungen	691
	20.3.3 Schwingfestigkeitsnachweis von Schweißverbindungen	699
	20.3.4 Nachbehandlung zur Schwingfestigkeitsverbesserung	713
21	Sonderwerkstoffe	717
	21.1 Aluminiumpulvermetallurgie	717
	21.1.1 Herstellen von Legierungspulvern	717
	21.1.2 Kompaktieren von Pulvern zu Formteilen	720
	21.1.3 Sprühkompaktieren	722
	21.1.4 PM-Legierungen	724
	21.1. + 1 W-Degiorangen	14

	21.2 Aluminiummatrix-Verbundwerkstoffe	725
	22.2.1 Grundlagen und Eigenschaften	725
	21.2.2 Anwendungsbeispiele	729
	21.3 Aluminiumschaumwerkstoffe	731
	21.3.1 Metallschaumherstellung	732
	21.3.2 Eigenschaftsspektrum metallischer Schäume	733
	21.3.3 Anwendungsaspekte	734
22	Gewinnung, Recycling, Ökologie	737
	22.1 Primäraluminium	737
	22.1.1 Vorkommen, Bauxiterze	737
	22.1.2 Gewinnungsprozeß	739
	22.2 Sekundäraluminium	742
	22.2.1 Ressourcen und Verwendung	743
	22.2.2 Materialkreislauf ("Recycling")	743
	22.3 Versorgungslage in Deutschland	745
	22.4 Ökologische Betrachtungen	746
	22.4.1 Ökobilanzen (Life Cycle Assessment)	746
	22.4.2 Energiefragen der Aluminiumgewinnung	749
An	ihang	753
T •		003
Lit	teratur	803
Sac	chverzeichnis	871

Tabellenverzeichnis

Tabelle 1.1 Einige vorteilhafte Gebrauchseigenschaften von Aluminium	2
Tabelle 2.1 Endverbrauch von Aluminiumhalbzeugen, Formguß, Folie und Pulver im Jahr 2004	9
Tabelle 2.1.1 Eigenschaften von Aluminium-Kolbenlegierungen	15
Tabelle 2.1.2 Aluminiumlegierungen für Zylinderköpfe	16
Tabelle 2.1.3 Aluminiumlegierungen für Motorblöcke.	18
Tabelle 2.1.4 Legierungen von Halbzeugen und Hartloten für Wärmetauscher	21
Tabelle 2.1.5 Karosserieblechlegierungen für Motorhauben.	28
Tabelle 2.1.6 Strangpreßlegierungen für Stoßfänger	30
Tabelle 2.1.7 Merkmale der Audi Modelle A8 und A2	34
Tabelle 2.1.8 Aluminiumlegierungen für Beplankungs- und Strukturteile	37
Tabelle 2.1.9 Karosserieblechlegierungen ausländischer Provenienz	38
Tabelle 2.1.10 Fertigungsschema von Blechkarosserieteilen aus Stahl und Aluminium	41
Tabelle 2.2.1 Aluminiumlegierungen für Bordwandprofilsysteme	43
Tabelle 2.2.2 Äquivalente Mindestwanddicken	45
Tabelle 2.2.3 Mindestwanddicke für Tankkörper nach DIN EN 13094	45
Tabelle 2.2.4 Für den Tankbehälterbau geeignete Aluminiumlegierungen	46
Tabelle 2.3.1 Aluminiumlegierungen für den Schienenfahrzeugbau	52
Tabelle 2.3.2 Mindesteigenschaften von Schweißverbindungen für den Schienenfahrzeugbau	54
Tabelle 2.4.1 Aluminium-Knetlegierungen für Anwendungen in tragenden Konstruktionen (n. Germanischer Lloyd, 2005)	60
Tabelle 2.4.2 Gußlegierungen, die dem Seewasserklima ausgesetzt werden können (n. Germanischer Lloyd, 2005)	61
Tabelle 2.5.1 Ausgewählte Luftfahrtlegierungen	63