Edgar Dietrich Alfred Schulze

Measurement Process Qualification

Gage Acceptance and Measurement Uncertainty According to Current Standards

HANSER

Edgar Dietrich/Alfred Schulze Measurement Process Qualification

Edgar Dietrich Alfred Schulze

Measurement Process Qualification

Gage Acceptance and Measurement Uncertainty According to Current Standards

HANSER

Hanser Publishers, Munich

Hanser Publications, Cincinnati

The authors: Dr.-Ing. Edgar Dietrich, Dipl.-Ing. Alfred Schulze, Q-DAS GmbH & Co. KG, Weinheim.

Distributed in the USA and in Canada by Hanser Publications 6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA Fax: (513) 527-8801 Phone: (513) 527-8896 or 1-800-950-8977 www.hanserpublications.com

Distributed in all other countries by Carl Hanser Verlag Postfach 86 04 20, 81631 München, Germany Fax: +49 (89) 98 48 09 www.hanser.de

The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Library of Congress Cataloging-in-Publication Data

Dietrich, Edgar, 1951-[Eignungsnachweis von Pruffprozessen. English] Measurement process qualification : gage acceptance and measurement uncertainty according to current standards / Edgar Dietrich, Alfred Schulze. p. cm. Includes bibliographical references and index. ISBN-13: 978-1-56990-505-0 (hardcover) ISBN-10: 1-56990-505-3 (hardcover) ISBN-13: 978-3-446-42407-4 (hardcover) I. Measurement. 2. Tolerance (Engineering) 3. Gages. I. Schulze, Alfred, 1952- II. Title. T50.D53613 2011 620'.0044--dc22

2011010487

Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

German ISBN: 978-3-446-42407-4 US-ISBN: 978-1-56990-505-0 E-Book-ISBN: 978-3-446-42955-0

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in writing from the publisher.

© 2011 Carl Hanser Verlag, Munich www.hanser.de Lecturer: Dipl.-Ing.Volker Herzberg Production Management: Der Buch*macher*, Arthur Lenner, München Typesetting: Heide Mesad Coverconcept: Marc Müller-Bremer, www.rebranding.de, München, Germany Coverillustration: Atelier Frank Wohlgemuth, Bremen Coverrealisation: Stephan Rönigk Printed and bound by Druckhaus »Thomas Müntzer« GmbH, Bad Langensalza, Germany Printed in Germany

Preface

Measurement process capability studies gained in importance during the last years. At the end of the 1980s, there were only few company guidelines referring to the significance of gages and only some of them required capability studies. Over the years, new and further guidelines were added. The procedure was more and more refined and its application improved. After the methodology had established itself, more and more requirements were added from quasi-standards, such as the QS-9000 or VDA 6.1 guidelines. From now on, measurement process capability studies have to be conducted regularly in order to obtain the respective QM system certificate.

Today, the field of capability studies also includes the determination of measurement uncertainties that is to be applied in production. As an example, ISO 14253 [29] requires the determination of the measurement uncertainty for measures of length. This uncertainty must be taken into account at the specification limits. Hence, more and more companies are obliged to include the calculation of the measurement uncertainty in their QM system and to administer it in the respective application. In order to facilitate these procedures as much as possible, the German Association of the Automotive Industry (VDA) has already published the "Measurement Process Capability" guideline (VDA 5 [70]). As the title indicates, this guide does not only deal with measuring devices. It is also about all the influencing factors affecting the measuring device.

The second and third edition of our book "Statistical Procedures for Machine and Process Qualification" [13] contains a chapter about "gage capability". Due to the variety of procedures for measurement process capability studies, we decided to leave out this topic in the fourth edition and to publish this book instead. In order to better define this subject in detail.

Special thanks go to Mr. Ofen (Robert Bosch GmbH, Bamberg) for the long-term cooperation and his professional support. Major parts of the book "Sonderfälle bei der Beurteilung von Messverfahren" (special cases in the evaluation of measurement procedures) [67] are penned by him. Upon his approval, we adopted some passages in this book.

Our thanks also go to Ms. Mesad for the layout and the textual and graphical presentation of this book.

In case of questions, please contact us directly. Q-DAS[®] GmbH, Eisleber Str. 2, 69469 Weinheim, Germany, phone: +49 6201 3941 0, fax: +49 6201 3941 24, hotline: +49 6201 3941 14, e-mail: q-das@q-das.de.

Weinheim, April 2003

Edgar Dietrich and Alfred Schulze

Preface to the 2nd Edition

The subject this book received a great many response. We received a significant amount of feedback on the first edition including many suggestions and proposals. In particular, our thanks goes to those readers who advised us of some inconsistencies. We acted on these suggestions and the new edition considers that helpful input.

By now, VDA 5 "Measurement Process Capability" has been published. It caused many discussions among experts but also raised many questions. Hence, we expanded on this particular subject and added some sample calculations.

In many conversations and seminars, people have always expressed the wish to have a different procedure for the determination of the "extended measurement uncertainty". This procedure is to be structured in a similar way as the widely-used "R&R" procedure for the determination of gage capability. So we developed AIO procedure (all-in-one method) for the determination of extended measurement uncertainty. This procedure is based on current draft standards and facilitates the determination of individual standard uncertainties in a step by step proceedure. The final result is the calculated extended measurement uncertainty.

Graduate engineer Michael Radeck supported us in providing new sample calculations. He also edited the "attribute gage" subject. We would like to thank him for his assistance.

Weinheim, Mai 2004

Edgar Dietrich and Alfred Schulze

Preface to the 3rd Edition

The second edition already contained the determination of the measurement uncertainty according to the "Guide to the Uncertainty in Measurement" (GUM [32]) but its application was uncommon in industrial production. However, things have changed lately.

Particularly due to the new ISO 10012:2004 [29] "Measurement Management Systems -Requirements for Measurement Processes and Measuring Equipment" standard, this subject has gained in importance. As the standard's subheading indicates, the measurement uncertainty must be determined for the respective measurement process. The standard says: "The measurement uncertainty must be estimated for every measurement process that is monitored by the measurement system. The Guide to the Expression of Uncertainty in Measurement (GUM) [32] contains the methods to be applied."

Due to this fact, we decided to deal with measurement uncertainty in more detail in this book.

Since the publication of the second edition in May 2004, further company guidelines about "measurement process capability studies" have been launched. We added the DaimlerChrysler LF05 guideline and the Robert Bosch GmbH booklet 10 in this edition. Both guidelines implemented the procedures and methods for measurement process capability studies that this book describes in theory. Today, companies and suppliers have gained experience in using these methods by applying these guidelines. The practical benefit of the determination of measurement uncertainty is confirmed.

Graduate engineer Stephan Conrad supported us in writing the "Determination of Measurement Uncertainty" chapter. We would like to thank him for his assistance.

In case of questions, please contact us directly. Q-DAS[®] GmbH, Eisleber Str. 2, 69469 Weinheim, Germany, phone: +49 6201 3941 0, fax: +49 6201 3941 24, hotline: +49 6201 3941 14, e-mail: q-das@q-das.de.

Weinheim, September 2006

Edgar Dietrich and Alfred Schulze

Table of Contents

Pre	face			v		
Pre	face	to the 2	2 nd Edition	vi		
Pre	face	to the 3	^{3rd Edition}	vi		
Tab	le of	Conter	nts	ix		
1	Measurement Process Capability					
	1.1	1.1 Introduction				
	1.2	1.1.1	Why Measurement Process Capability?	1		
		Historical Retrospect and Prospect				
	4.0	1.2.1	Development "Measurement Process Capability"	9		
	1.3					
0	Conse Meritering on a Desis for Measurement Presson Consel:					
Ζ	Gag		Coring as a Basis for Measurement Process Capability			
	2.1	Gage G	JailDration	10		
	2.3	2 Dial Gage Calibration				
3	Defi	nitions	and Terms	22		
0	3.1	Proces		22		
	3.2	3.2 Measurement Process				
	3.3	Testing Measuring Equipment				
	3.4					
	3.5	Measurement Deviations and Measurement Uncertainty		27		
		3.5.1 Bias				
		3.5.Z	Repeatability	29 30		
		354	l inearity			
		3.5.5	Measurement Stability			
4	Influencing Eactors on the Measurement Process 34					
	4.1	1 Typical Influencing Eactors				
	4.2	.2 Impact of the Influencing Factors				
	4.3	Evalua	tion of the Measurement Process	40		
5	Gage Capability as a Measurement Process Capability Study44					
	5.1	.1 Basic Procedures and Methods				
	5.2	Evalua	tion of Gages	47		
		5.2.1	Uncertainty of the Standard Master / Calibration Master	47		
		5.2.2	Influence of the Resolution			
		5.2.3	Evaluation of the Bias	51		
		5.2.4 5.2.5	Quality Canability Indices C, and C.			
		5.2.6	Study Type 1 for Characteristics with Unilateral Tolerances			
		5.2.7	Study Type 1 for Several Characteristics	69		
		5.2.8	Linearity	69		
	5.3	Evalua	tion of the Measurement Process	80		

		5.3.1	Range Method (Short Method)	80
		5.3.2	Study Type 2: %R&R with Operator Influence	82
		5.3.3	Study Type 3: %R&R without Operator Influence	102
	5.4	Testing	Measurement Stability	105
	5.5	Further	Studies	109
		5.5.1	Study Type 4	109
		5.5.2	Study Type 5	111
	5.6	Method	according to CNOMO	114
6	Сар	ability St	udy of Attribute Measurement Processes	117
	6.1	Attribute	e Gages	117
	6.2	Attribute	e Gaging or Variable Measuring	118
	6.3	Require	ments for Successful Inspections by Attribute	119
	6.4	Analysis	s of Attribute Measurement Processes "Short Method"	120
	6.5	Analysis	s of Attribute Measurement Processes "Extended Method"	123
		6.5.1	Introduction	123
		6.5.2	Testing Hypotheses	127
		6.5.3	Evaluating the Effectiveness of an Attribute Measurement System	133
		6.5.4	Signal Recognition Method	137
7	Exte	ended Me	easurement Uncertainty	143
	7 1	Guide to	the Expression of Uncertainty in Measurement	143
	1.1	7 1 1	Basic Principles	143
		712	Aim and Purpose of the GLIM	144
		713	Field of Application	145
		714	Contents of the Guide	146
		715	Terms and Definitions	147
	72	Determi	ination of Measurement Uncertainties	150
	1.2	721	Determination of the Standard Uncertainty	151
		722	Determination of the Combined Standard Uncertainty	156
		723	Determination of the Extended Uncertainty	158
		724	Logging of the Uncertainty	161
		725	Every provide the Result	162
	73	GUM H	1 Example: Gage Block Calibration	163
	1.0	731	Measuring Task	163
		732	Standard Uncertainties	164
	7 /	Calibrat	ion of a Weight for the Nominal Value of 10 kg (S2)	172
	7.7	7/1	Measuring Task	172
		7.4.1	Standard Uncertainties	172
		7.4.2	Extended Measurement Uncertainty and Complete Measurement Result	170
	75	7.4.5 Calibrat	ing a Caliper	181
	7.5	7 5 1	Measuring Task	181
		7.5.1	Standard Massurement Lincortainty (\$10.3 \$10.0)	101
		7.5.2	Standard Measurement Uncertainty (S10.5-S10.9)	102
	76	7.5.3 GUM In	Extended measurement Oricertainty and Complete measurement Result.	187
0	г.0 Бин-		acquirement Upportainty according to 100,00544.7 or VDA 5	100
0			easurement oncertainty according to ISO 22514-7 of VDA 5	100
	0.1		-iuw Ullall	100
		0.1.1		109
		0.1.2		190

		8.1.3	Determination of the Standard Uncertainty as per Determination Met	hod A191		
		8.1.4	Determination of the Standard Uncertainty as per Determination Met	hod B192		
	8.2	Principa	al Standard Uncertainty Components	194		
		8.2.1	Standard Uncertainty u _{CAL}			
		8.2.2	Standard Uncertainty of the Resolution uRE			
		8.2.3	Standard Uncertainty u _{BI}	197		
		8.2.4	Standard Uncertainty u _{MS} in Case of Standard Gages	198		
		8.2.5	Standard Uncertainty Caused by Equipment Variation at the Referer UEVR.	nce Part 199		
		8.2.6	Standard Uncertainty Caused by Equipment Variation at the Object	u _{EVO} 199		
		8.2.7	Standard Uncertainty Caused by the Operator Influence u _{AV}	201		
		8.2.8	Standard Uncertainty Caused by the Test Object uOBJ	201		
		8.2.9	Standard Uncertainty Caused by the Temperature Influence u_T	204		
		8.2.10	Standard Uncertainty Caused by Non-linearity uLIN	207		
		8.2.11	Standard Uncertainty Caused by Stability uSTAB	208		
	8.3	Multiple	Consideration of Uncertainty Components	210		
	8.4	Determi	nation of the Extended Measurement Uncertainty	211		
	8.5	Conside	aration of the Extended Measurement Uncertainty at the Specification	Limits211		
	8.6	VDA 5 0	Case Studies	213		
		8.6.1	Example: "Linear Measurement Using a Standard Gage"	213		
		8.6.2	Example: "Linear Measurement Using a Particular Gage"	220		
9	Simp	olified De	etermination of the Measurement Uncertainty	227		
	9.1	AIO Pro	cedure ("All-in-One" Procedure)	227		
		9.1.1	Measurement Process Capability Study	227		
		9.1.2	Determination of the Extended Measurement Uncertainty	227		
	9.2	Practica	al Examples of the "All-in-One" Procedure	231		
		9.2.1	Measurement Process with Linear Material Measure	231		
		9.2.2	Measurement Processes without Linear Material Measure	233		
10	Spee	cial Case	es in Measurement Process Capability	236		
	10.1 What Is a Special Case?					
	10.2	Typical	Special Cases	236		
11	How	to Hand	de Incapable Measurement Processes	238		
	11.1	Procedu	ure for Improving Measurement Processes	238		
12	Турі	cal Ques	stions about Measurement Process Capability	241		
	12.1 Questions					
	12.2	Answer	S	241		
13	Cap	abilitv St	udies in Visual Inspections	244		
	13.1 Requirements for Visual Inspections					
	13.2	Aptitude	e Test for Visual Inspectors			
14	Purc	hase of	Gages	248		
	14.1	14.1 Example for a Measuring Task Description 240				
	14.2	Example	e for a Requirement Specification			
15	Proof of Suitability for Test Software					
	15.1	15.1 General Consideration				
	15.2	The My	th of "Excel Tables"	254		

	15.3	5.3 Gage Capability Test Examples			
16	Appendix				
	16.1	Tables		270	
		16.1.1	d2* Table for the Determination of k Factors and Degrees of	of Freedom for	
			t Values	270	
		16.1.2	Capability Limits according to VDA 5	273	
		16.1.3	k Factors	274	
	16.2	Analysis	s of Variance Models		
		16.2.1	Measurement System Analysis – Study Type 2	274	
		16.2.2	Measurement System Analysis – Study Type 3	279	
17	Refe	rence			
	17.1	Abbrevi	ations		
	17.2	Formula	IS		
	17.3 Bibliography				
	17.4 Figures				
	17.5	Tables			
18	"Mea	sureme	nt System Capability" Reference Manual		
19	GM PowerTrain Measurement Systems Specification (SP-Q-MSS)				
20	Bosch Booklet 10: Capability of Measurement and Test Processes402				
21	Index				

1 Measurement Process Capability

1.1 Introduction

1.1.1 Why Measurement Process Capability?

One sentence can answer this question. "It is the necessity to have appropriate measurement processes available for the correct evaluation of manufacturing and production processes." The measurement values determined in the measurement process are the basis of the evaluation and have to reflect the actual situation quite realistically. A non-capable measurement process does not give a true picture of reality and does not allow reliable conclusions to be drawn.

Hence, the following question has to be answered: "What does a capable measurement process mean?" Today, several standards and guidelines (see Figure 1-1), answer this question. These standards and guidelines require capability studies and describe procedures how to conduct them.

Figure 1-1: Important requirements of automotive and standardization guidelines in connection with measurement process capability

Figure 1-1 displays important requirements of automotive and standardization guidelines.

For the evaluation of measurement systems, ISO/TS 16949:2002 [37] requires:

"Each kind of measurement system demands statistical studies in order to analyze the variation of the measurement results. This requirement applies to all measurement systems that are referred to in the production control plan. The applied methods and acceptance criteria have to correspond to the criteria mentioned in the customer's reference guide for the evaluation of measurement systems. Other analytical methods and acceptance criteria may only be applied on the customer's authority."

The statement that other methods are possible on the customer's authority is not relevant to many suppliers because they cannot make individual agreements with all their customers. In order to certify the QM system, they can only consult general standards (e.g. MSA [1] or VDA [70]) and use them as the basis for process capability.

Chapter 1.2 "Historical Retrospect and Prospect" illustrates the context and the development of the indivdual documents. Machine and production facilities acceptance, evaluation of processes and products or continuous process monitoring are based on the evaluation of qualitative and quantitative product characteristics. The analysis focuses on quantitative or variable characteristics. However, another chapter deals with capability studies for qualitative or attribute characteristics.

In case of qualitative characteristics, measurement systems provide measurement values of the characteristics of the produced parts or process parameters. This requires task-related measurement systems, specific sensors and customary standard measuring devices.

In order to draw the right conclusions from the measurement values, the values must be recorded with sufficient measurement accuracy" relating to the characteristic's tolerance or the process. In the past, the suitability of a measuring device was tested by means of minimum values given in standards or the manufacturer's specifications were monitored. Today, clear specifications are available. The ISO 10012:2004 [29] requires the determination of the measurement uncertainty according to EN 13005 [32]. However, testing the gage under ideal conditions is only one single component when determining the measurement uncertainty of the measurement process, e.g. in the metrology lab, tested by trained staff, using idealized parts such as a standard master or calibration master, and in standardized facilities. The VDI / VDE / DGQ guideline 2618 [74] provides examples of the procedure and test methods in the form of test instructions. Continuous monitoring (gage monitoring) and new devices for the inspection of manufacturer's specifications require this proceeding in order to detect changes or errors at the device.

The determined "capability" does not reveal anything or hardly anything about the behavior of the device under real conditions (see Figure 1-2).