Mechanik, Werkstoffe und Konstruktion im Bauwesen | Band 45

6

Johannes Franz

Untersuchungen zur Resttragfähigkeit von gebrochenen Verglasungen

Investigation of the residual load-bearing behaviour of fractured glazing

TECHNISCHE UNIVERSITÄT DARMSTADT

Mechanik, Werkstoffe und Konstruktion im Bauwesen

Band 45

Institutsreihe zu Fortschritten bei Mechanik, Werkstoffen, Konstruktionen, Gebäudehüllen und Tragwerken.

Johannes Franz

Untersuchungen zur Resttragfähigkeit von gebrochenen Verglasungen

Investigation of the residual loadbearing behaviour of fractured glazing

Johannes Franz Institut für Statik und Konstruktion Technische Universität Darmstadt Darmstadt, Deutschland

Dissertation Technische Universität Darmstadt, 2015

D 17

Mechanik, Werkstoffe und Konstruktion im Bauwesen ISBN 978-3-662-48555-2 ISBN 978-3-662-48556-9 (eBook) DOI 10.1007/978-3-662-48556-9

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer-Verlag Berlin Heidelberg 2015

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichenund Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Berlin Heidelberg ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Statik und Konstruktion der Technischen Universität Darmstadt.

Daher gilt auch mein besonderer Dank Herrn Prof. Dr.-Ing. Jens Schneider für die Übernahme des Referats, das entgegengebrachte Vertrauen und Interesse an meiner Forschung, die freie wissenschaftliche Entfaltung sowie die stets wohlwollende Förderung und Betreuung.

Ebenso danke ich herzlich Herrn Prof. habil. Dr.-Ing. Stefan Kolling der Technischen Hochschule Mittelhessen für seine Bereitschaft zur Übernahme des Korreferats, den motivierenden wissenschaftlichen Zugang in die Polymermechanik und die stets freundliche Unterstützung bei der Bearbeitung meiner Arbeit insbesondere bei mechanischen und numerischen Fragestellungen.

Bei meinen Kollegen und Mitarbeitern des Institutes bedanke ich mich für die gute Zusammenarbeit. Dabei gilt mein besonderer Dank Jonas Hilcken, Jonas Kleuderlein, Johannes Kuntsche und Sebastian Schula für die inspirierenden Diskussionen und Ratschläge. Für die Unterstützung bei den experimentellen Untersuchungen und den dabei entstandenen Studienarbeiten möchte ich mich bei den Studierenden bedanken, die dadurch einen nicht unerheblichen Anteil zur Fertigstellung dieser Arbeit beigetragen haben. Bei Herrn Dipl.-Ing. Stefan Hiss von Kuraray Europe GmbH für die unermüdliche und kostenfreie Bereitstellung der zahlreichen und komplexen Probekörper. Die vielfältigen Versuche wären ohne die wohlwollende Unterstützung des Deutschen Instituts für Bautechnik und dessen Mitarbeiterin Frau Dipl.-Ing. Monika Herr nicht möglich gewesen.

Ich danke Joschi, Krystyna, Marion und Reinhard für die konstruktive Kritik und das Korrekturlesen meiner Arbeit sowie bei Andi und Ratz für die uneingeschränkten Unterstützungen über all die Jahre.

Meiner Familie, insbesondere meiner Frau Kerstin, danke ich für die entgegengebrachte Unterstützung und Geduld während meiner wissenschaftlichen Tätigkeit.

Hausen, im August 2015

Johannes Franz

Kurzzusammenfassung

Im Bauwesen verwendete horizontale Verglasungen, die nicht den geregelten bautechnischen konstruktiven Randbedingungen entsprechen, müssen gemäß den Vorgaben der deutschen Bauaufsichtsbehörde einem der Einbausituation angepassten Resttragfähigkeitsversuch unterzogen werden.

Die vorliegende Arbeit leistet einen praxisrelevanten Beitrag zum derzeitigen Wissenstand von gebrochenen Verbundgläsern und zeigt eine Weiterentwicklung der aufwendigen Resttragfähigkeitsversuche auf.

Um die Zeit- und Kostenintensität der Resttragfähigkeitsversuche zu verbessern sowie die Reproduzierbarkeit solcher zu ermöglichen, wird der Frage nachgegangen, inwieweit eine Klassifizierung der Zwischenschicht von Verbundglas hinsichtlich der Resttragfähigkeit möglich ist. Dazu werden verschiedene Prüfmethoden mit unterschiedlichen Zwischenschichten betrachtet, welche das Verbundglas als Ganzes im Kontext der Resttragfähigkeit berücksichtigen.

Die Ergebnisse zeigen, dass die beiden Prüfmethoden Through-Cracked-Bending Test und Through-Cracked-Tensile Test eine Klassifizierung der Zwischenschicht über den Vergleich zur Standardfolie für Bauanwendungen ermöglichen. Zudem wird aus den Ergebnissen die Bedeutung des Delaminationsvermögens der Folie vom Glas im gebrochenen Zustand deutlich.

Basierend auf diesen Erkenntnissen wird das Delaminationsvermögen von verschiedenen Haftgraden der Standardfolie im Through-Cracked-Tensile Test bei unterschiedlichen Wegraten studiert. Das Delaminationsvermögen des Verbundglases kann mittels seiner Energiefreisetzungsrate charakterisiert werden, welche die benötigte Energie zur Ablösung der Folie vom Glas quantifiziert. Aus den experimentellen Versuchen kann eine Korrelation zwischen der Energiefreisetzungsrate und dem Haftgrad sowie der Wegrate festgestellt werden.

Anhand dieser Ergebnisse wird die numerische Abbildung der Delamination der Folie in gebrochenem Verbundglas mit Kohäsivzonenmodellen in dieser Grenzschicht mittels der Methode der finiten Elementen eingehend untersucht. Hierzu werden verschiedene Materialgesetze der Folie und der Grenzschicht beleuchtet.

Der Vergleich zwischen den experimentellen Versuchsergebnissen und den numerischen Ergebnissen zeigt, dass die Modellierung der Grenzfläche mit Kohäsivzonenmodellen eine geeignete Methode darstellt, um das Verhalten von gebrochenen Verglasungen realitätsnah abzubilden. Die Finite Elemente Berechnungen zeigen jedoch auch die derzeitigen Grenzen der implementierten Materialgesetze, insbesondere bei ratenabhängigen Materialien mit großen Dehnungen, auf.

Abstract

Laminated horizontal glazing used in construction falling outside of German building regulations must be subjected to a residual load-bearing capacity test. The test is set up to resemble the installation situation in accordance with the individual guidelines of the German building supervisory board.

The following work contributes to the existing knowledge of fractured laminated glazing and expands on approaches of performing the residual loading-bearing capacity test. The objective is to optimize the procedure for carrying out the residual load-bearing test in terms of time and cost, and to address the lack of reproducibility of residual load-bearing capacity tests.

Methods for classifying laminated glass interlayers in terms of their residual loadbearing capacity are investigated by subjecting various types of interlayers to several different test methods. The results show that two testing methods – the Through-Cracked-Bending Test and the Through-Cracked-Tensile Test – may be used to classify laminated glass interlayers relative to a standard interlayer for construction applications. Findings also point to the importance of considering the delamination capacity of the interlayer in fractured laminated glazing.

Based on the results of these investigations, the delamination behaviour of different adhesion levels of a standard interlayer are studied by the means of the Through-Cracked-Tensile Test which is performed with different displacement rates. The delamination capacity of fractured laminated glass can be characterized by its energy release rate, which quantifies the interfacial energy required to detach the interlayer from glass. The experimental tests undertaken reveal that the energy release rate is dependent on the interlayer adhesion level and displacement rate.

Finally, the interfacial delamination of fractured laminated glazing exhibited in experimental testing is simulated through a finite element model consisting of cohesive zone models between the interlayer and the glass. Therefore, various material laws of the interlayer and the interfacial adhesion are taken into account. The partial agreement between experimental test results and the finite element model results indicates that a numerical approach based on the cohesive zone model is a viable method for assessing the behavior of fractured glass. The finite element analysis also reveals that existing finite element programs have shortcomings with respect to their capability of simulating rate-dependent material behaviour with high strain.

Inhaltsverzeichnis

A	Abbildungsverzeichnis xv			
Ta	abell	enverz	eichnis	xix
A	bkür	zunge	n und Formelzeichen	xxi
1	Einl	eitung		1
	1.1	Proble	mstellung	1
	1.2	Zielset	zung und Aufbau der Arbeit	2
2	Mec	haniso	che Grundlagen	7
	2.1	Allgen	neine Bemerkungen	7
	2.2	Kinem	atik	7
		2.2.1	Deformation	7
		2.2.2	Verzerrungsmaße	10
		2.2.3	Lineare Theorie	11
	2.3	Spann	ung	12
		2.3.1	Spannungsvektor	12
		2.3.2	Spannungstensoren	14
	2.4	Konsti	tutivgleichung	15
		2.4.1	Elastizitätsgesetz	15
		2.4.2	Linear elastisches, isotropes Materialverhalten	16
		2.4.3	Hyperelastizität	17
		2.4.4	Lineare Viskoelastizität	22
	2.5	Linear	elastisches Konstitutivgesetz von Scheiben	27
	2.6	Mecha	nische Beschreibung von Rissen	29
		2.6.1	Linear elastische Bruchmechanik	29
		2.6.2	K-Konzept	30
		2.6.3	Energetische Konzepte	31
		2.6.4	Kohäsivzonenmodelle	33
3	Wer	kstoff	grundlagen	39
	3.1	Glas		39
		3.1.1	Amorphes Material	39

		3.1.2	Glasoberfläche	41	
		3.1.3	Kalk-Natronsilikatglas	41	
		3.1.4	Basisprodukt Floatglas	42	
	3.2	Kunsts	stoffe	45	
		3.2.1	Molekulare Struktur und Materialverhalten von Polymeren	45	
		3.2.2	Polyvinylbutyral-Folie	49	
		3.2.3	Ionoplast	55	
		3.2.4	Zusammenstellung der untersuchten Zwischenmaterialien	57	
	3.3	Verbur	ndglas und Verbund-Sicherheitsglas	59	
		3.3.1	Begriffbestimmung und Anforderungen	59	
		3.3.2	Herstellung	62	
4	Res	ttragfä	higkeit von Verbund-Sicherheitsglas	65	
	4.1	Verbur	ndwirkung	65	
	4.2	Bruch	zustände	67	
		4.2.1	Einteilung	67	
		4.2.2	Bruchzustand I: Intaktes VSG	68	
		4.2.3	Bruchzustand II: Teilweise zerstörtes Glas des VSG	69	
		4.2.4	Bruchzustand III: Vollständig zerstörtes Glas des VSG	72	
	4.3	Norma	tive Umsetzung der Resttragfähigkeit	74	
	4.4	4 Stand der Forschung hinsichtlich Resttragfähigkeit			
		4.4.1	Charakterisierung	76	
		4.4.2	Stand der Forschung	78	
5	Klas	sifizie	rung der Zwischenschicht von VSG hinsichtlich der Rest-		
	trag	fähigk	eit	83	
	5.1	Einfüh	rung und Zielsetzung	83	
	5.2	Stoßar	tige Prüfungen am Verbund-Sicherheitsglas (VSG)	84	
	5.3	Standa	rdisierte Prüfmethoden zur Beurteilung des Verbundes von VSG	85	
		5.3.1	Allgemeines	85	
		5.3.2	Feuchtemessung	85	
		5.3.3	Prüfung bei hoher Temperatur	86	
		5.3.4	Bestimmung der Glashaftung	86	
	5.4	Phäno	menologisch motivierte Versuche	89	
	5.5	Betrac	htete Versuchsanordnungen und Zwischenschichten	91	
	5.6	Nicht	anwendbare Versuchsanordnungen	92	
		5.6.1	Begründungen	92	
		5.6.2	End Notched Flexure Test	92	
		5.6.3	Double Cantilever Beam Test	95	
	5.7	Haftzu	g- und Haftscherversuch	100	
		5.7.1	Probekörper	100	

		5.7.2	Haftzugversuch (VW-Pull Test)	100
		5.7.3	Haftscherversuch	102
		5.7.4	Interpretation	104
	5.8	Throug	gh-Cracked-Tensile Test	105
		5.8.1	Versuchsaufbau und Durchführung	105
		5.8.2	Ergebnisse und Auswertung	107
		5.8.3	Interpretation	112
	5.9	Throug	gh-Cracked-Bending Test	112
		5.9.1	Versuchsapparatur	112
		5.9.2	Versuchsdurchführung	113
		5.9.3	Vorgehen bei der Auswertung der mechanischen Größen	116
		5.9.4	Ergebnisse und Auswertung	123
		5.9.5	Interpretation	126
	5.10	Refere	enzversuche zur Resttragfähigkeit	127
		5.10.1	Bauteilversuche als Referenzversuche	127
		5.10.2	Versuchsaufbau und Durchführung	128
		5.10.3	Ergebnisse und Auswertung	131
	5.11	Vergle	ich und Beurteilung der untersuchten Prüfmethoden	134
	5.12	Empfe	hlungen	138
-				
6	Dela	minat	ionsverhalten von PVB im gebrochenen VSG	143
	6.1	Delam	unationsvermogen	143
		6.1.1	Begriffbestimmung	143
	()	6.1.2	Stand der Forschung	144
	6.2	Energi	letreisetzungsrate	145
	6.3	Versuc	chsdurchführung und -programm	148
		6.3.1	Versuchsaufbau und Probenvorbereitung	148
		6.3.2	Probekörper	149
		6.3.3	Versuchsprogramm	150
	<i></i>	6.3.4	Versuchsdurchführung	151
	6.4	Beurte	filung der Haftfestigkeit	153
	6.5			155
		Vorgel	nen bei der Auswertung	155
	6.6	Vorgeł Ergebr	nen bei der Auswertung	155
	6.6 6.7	Vorgeł Ergebr Interpr	nen bei der Auswertung nisse und Auswertung retation und Vergleich mit der Literatur	155 157 162
	6.6 6.7 6.8	Vorgeł Ergebr Interpr Zusam	nen bei der Auswertung nisse und Auswertung retation und Vergleich mit der Literatur nmenfassung und Empfehlungen	155 157 162 164
7	6.6 6.7 6.8	Vorgeł Ergebr Interpr Zusam	nen bei der Auswertung nisse und Auswertung retation und Vergleich mit der Literatur nmenfassung und Empfehlungen ne Berechnungsansätze der Delamination	153 157 162 164 167
7	6.6 6.7 6.8 Num 7.1	Vorgeł Ergebr Interpr Zusam herisch Umset	nen bei der Auswertung nisse und Auswertung retation und Vergleich mit der Literatur nenfassung und Empfehlungen ne Berechnungsansätze der Delamination rzung mit der Methode der finiten Elemente	153 157 162 164 167 167
7	6.6 6.7 6.8 Num 7.1	Vorgeh Ergebr Interpr Zusam herisch Umset 7.1.1	nen bei der Auswertung nisse und Auswertung retation und Vergleich mit der Literatur nenfassung und Empfehlungen ne Berechnungsansätze der Delamination zung mit der Methode der finiten Elemente Allgemeine Bemerkungen	153 157 162 164 167 167 167
7	6.6 6.7 6.8 Num 7.1	Vorgeh Ergebr Interpr Zusam Merisch Umset 7.1.1 7.1.2	nen bei der Auswertung nisse und Auswertung retation und Vergleich mit der Literatur umenfassung und Empfehlungen ne Berechnungsansätze der Delamination zung mit der Methode der finiten Elemente Allgemeine Bemerkungen Kontinuumselemente	133 157 162 164 167 167 167 168
7	6.6 6.7 6.8 Num 7.1	Vorgeł Ergebr Interpr Zusam herisch Umset 7.1.1 7.1.2 7.1.3	nen bei der Auswertung nisse und Auswertung retation und Vergleich mit der Literatur menfassung und Empfehlungen ne Berechnungsansätze der Delamination rzung mit der Methode der finiten Elemente Allgemeine Bemerkungen Kontinuumselemente Grenzflächenelemente	153 157 162 164 167 167 167 168 168

	7.2	Materialgesetze		
	7.3	Kohäsivgesetz der Grenzfläche		
	7.4	Through-Cracked-Tensile Test		
		7.4.1 Modellierung		
		7.4.2 Numerische Untersuchungen		
		7.4.3 Validierung des numerischen Modells		
		7.4.4 Auswertung und Interpretation		
	7.5	Beurteilung der numerischen Untersuchungen		
8	Zus	ammenfassung und Ausblick	191	
	8.1	Zusammenfassung der Erkenntnisse		
	8.2	Weiterer Forschungsbedarf		
Literaturverzeichnis			197	
A	Anhangsverzeichnis 2			

Abbildungsverzeichnis

1.1	Resttragfähigkeit einer punktförmig gelagerten Horizontalverglasung	2
1.2	Resttragfähigkeitsprüfung einer Verglasung in Einbausituation	3
1.3	Aufbau der Arbeit	5
2.1	Schematische Darstellung der Deformation eines Körpers	9
2.2	Geometrische Deutung der Dehnung und Schubverformung	11
2.3	Spannungsvektor in der Ausgangs- und Momentankonfiguration	13
2.4	Darstellung des Cauchyschen Spannungstensors	15
2.5	Arbeit am infinitesimalen Volumenelement	18
2.6	Nichtlineare Spannungs-Verzerrungskurve	19
2.7	Kriechversuch an einem Kelvin-Voigt-Körper	23
2.8	Relaxationsversuch an einem Maxwell-Körper	24
2.9	Lineare Standardkörper	24
2.10	Allgemeines Relaxationsmodell	25
2.11	Zeit-Temperatur-Verschiebungsprinzip	26
2.12	Erstellen einer Masterkurve mit dem Zeit-Temperatur-Verschiebungsprinzip	27
2.13	Rissöffnungsarten	29
2.14	Schematischer Rissfortschritt	32
2.15	Modellvorstellung der Kohäsivzone	34
2.16	Exponentielles Kohäsivgesetz	36
2.17	Bilinearer Ansatz	37
3.1	Darstellung unterschiedlicher SiO ₂ -Netzwerke	40
3.2	Temperaturabhängigkeit des Volumens von Glas	40
3.3	Herstellungsprozess von Floatglas	43
3.4	Herstellung von vorgespanntem Glas	44
3.5	Bruchbilder von Basis- und Veredelungsprodukten	45
3.6	Vernetzung verschiedener Polymerarten	48
3.7	Einfluss von Temperatur und Vernetzung auf den Elastizitätsmodul	49
3.8	Dreistufiger Herstellungsprozess von Polyvinyl-Butyral	51
3.9	Grundelemente des PVB-Harzes	52
3.10	Haftung zwischen Glasoberfläche und Polyvinyl-Butyral (PVB)	54
3.11	Spannungs-Dehnungsverlauf von unterschiedlichen Folien	60
3.12	Detailaufnahme eines Verbundglases	61

3.13	Herstellung von VSG	62
4.1	Verbundwirkung von VSG	66
4.2	Einfluss der Verbundwirkung auf die resultierenden Spannungen im Glas	68
4.3	Bruchzustände von VSG und dessen Lastabtrag	69
4.4	Validierung des Lastabtrages anhand eines 4-Punkt-Biegeversuchs	70
4.5	Bruchzustand II	71
4.6	Bruchzustand III	73
4.7	Nachweis der Resttragfähigkeit nach DIN 18008	77
4.8	Delamination der PVB-Folie vom Glas infolge einer Biegebeanspruchung	82
5.1	Durchführung des Pummeltests	87
5.2	Versuchsaufbau des Kompressionsscherversuchs	88
5.3	Peel Test	91
5.4	Schematischer ENF-Versuchsaufbau	93
5.5	Versuchsdurchführung des ENF Tests und Probekörper nach der Prüfung	94
5.6	Schematische Darstellung einer modifizierten ENF-Probe für VSG	94
5.7	Schematischer DCB-Versuchsaufbau	95
5.8	Darstellung der DCB-Probekörper und deren Versuchsdurchführung	96
5.9	Delaminationsverhalten einer DCB-Probe	99
5.10	Last-Verformungsverhalten der DCB Tests	99
5.11	Probenvorbereitung und Versuchsapparatur des Haftzugversuchs	101
5.12	Kraft-Verformungsverläufe der Haftversuche	102
5.13	Versuchsapparatur des Haftscherversuches und geprüfte Probe	103
5.14	Versuchsdurchführung des TCT Tests	105
5.15	Vorgang des Glasbrechens	107
5.16	Aufgebrachte Markierungen auf die TCT-Proben	108
5.17	Delaminationsvermögen der SC-Folie und BG R20-Folie	108
5.18	SC-Folie: Delaminationsfortschritt bis zum Bruch	110
5.19	BG R20-Folie: Delaminationsfortschritt bis zum Bruch	110
5.20	SentryGlas ^(®) -Folie: Delaminationsfortschritt bis zum Bruch	111
5.21	Entwicklung der TCB Prüfapparatur	113
5.22	Geometrie-Ermittlung bei einer VSG-Scheibe mit definiertem Bruch	114
5.23	Versuchsapparatur mit optischer Bildaufnahme; Systemgeometrie	115
5.24	Versuchsablaufübersicht des TCB Tests	116
5.25	Darstellung der Kinematik und der Kräfte im TCB Test	117
5.26	Beobachteter Folienriss einer SentryGlas [®] -Folie	119
5.27	Delamination des Probekörpers SC#04	120
5.28	Unterschiedliche Delamination an der unteren und oberen Seite der Folie	121
5.29	Vorgehen bei der optischen Auswertung des TCT Tests	122
5.30	Kraft-Zeitverlauf der TCB Tests	124

5.31	Versuchsaufbau der Bauteilversuche	128
5.32	Versuchsanordnung des Bauteilversuchs	129
5.33	Bruchbild eines Prüfkörpers	130
5.34	Kraft-Zeitverlauf der Bauteilversuche	132
5.35	Gegenüberstellung der Folien im Kraft-Zeitverlauf	133
5.36	Längenänderung der Folie im Bruchzustand III	136
5.37	Varianten des Kraft-Verformungsverhaltens im TCT Test	141
6.1	Systemzeichnung zur Bestimmung der Energiefreisetzungsrate	144
6.2	TCT-Probekörper	149
6.3	Ergebnisse des Pummeltests	154
6.4	Optische Auswertung der Verformung der Folie	156
6.5	Delaminationsprozess und Verformungsverhalten des TCT Tests	157
6.6	Spannungs-Verformungsverlauf der TCT Tests	159
6.7	Ergebnisse der ausgewerteten Energiefreisetzungsraten	161
7.1	Scheibenelement höherer Ordnung	168
7.2	Quadratisches 2-D Interface-Element mit 6 Knoten	169
7.3	Kontaktelementformulierung bestehend aus Kontakt- und Zielelement	171
7.4	Viskoelastisches Materialgesetz von PVB-Folien als Prony-Serie	172
7.5	Identifizierung des 5-parametrischen Mooney-Rivlin Modells	173
7.6	Deformation der TCT-Probe 1.1.7	175
7.7	Konvergenzstudie zur Diskretisierung des TCT-Modells	177
7.8	Vergleich und Einfluss der Kohäsivgesetze auf die Reaktionskraft	178
7.9	Einfluss der Kontaktsteifigkeit auf die Ergebnisse	181
7.10	Einfluss der Energiefreisetzungsraten und Kohäsionsspannungen	182
7.11	Darstellung der Verschiebung und der Dehnungen einer Probe	183
7.12	Validierung der numerischen Simulation der TCT Tests	186
A.1	Schematischer Ablauf des Algorithmus der optischen Auswertung	209
D.1	TCT Test: 1. Versuchsreihe, Versuchsserie BG R10; schmal	227
D.2	TCT Test: 1. Versuchsreihe, Versuchsserie BG R10; breit	227
D.3	TCT Test: 1. Versuchsreihe, Versuchsserie BG R15; schmal	228
D.4	TCT Test: 1. Versuchsreihe, Versuchsserie BG R15; breit	228
D.5	TCT Test: 1. Versuchsreihe, Versuchsserie BG R20; schmal	229
D.6	TCT Test: 1. Versuchsreihe, Versuchsserie BG R20; breit	229
D.7	TCT Test: 2. Versuchsreihe, Versuchsserie BG R10; schmal	230
D.8	TCT Test: 2. Versuchsreihe, Versuchsserie BG R10; breit	230
D.9	TCT-Test: 2. Versuchsreihe, Versuchsserie BG R15; schmal	231
D.10	TCT Test: 2. Versuchsreihe, Versuchsserie BG R15; breit	231