HANSER

Leseprobe

zu

Optik für Ingenieure und Naturwissenschaftler

Mit 194 Aufgaben und Lösungen sowie 132 Abbildungen

von Rolf Martin

ISBN (Buch): 978-3-446-45660-0 ISBN (E-Book): 978-3-446-45769-0

Weitere Informationen und Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-45660-0

> sowie im Buchhandel © Carl Hanser Verlag, München

Vorwort

Das vorliegende Übungsbuch mit Aufgaben zur Optik sowie deren Lösungen ist gedacht als Ergänzung zum Lehrbuch "Optik für Ingenieure und Naturwissenschaftler", herausgegeben 2017 von E. Hering und R. Martin. Die ersten sieben Grundlagenkapitel des Lehrbuchs enthalten bereits eine große Zahl von Beispielen, die durch das Aufgabenbuch wesentlich erweitert werden.

Mit dieser Aufgabensammlung und den ausführlichen Lösungen wird ein Leserwunsch erfüllt. Die Aufgaben sind von verschiedenen Schwierigkeitsgraden; sie reichen von einfachen und leicht zu beantwortenden Fragen bis zu sehr komplexen Problemen, die mitunter nur mithilfe eines Rechners gelöst werden können. Mit vielen Abbildungen werden die Aufgaben und deren Lösungen veranschaulicht.

Die Zielgruppe, die mit diesem Buch angesprochen werden soll, sind Studierende, die ihre Kenntnisse und Fertigkeiten bei der Lösung optischer Fragestellungen vertiefen und festigen und sich auf Prüfungen dieses Fachgebiets vorbereiten wollen. Darüber hinaus ist die Beschäftigung mit optischen Fragen sicher auch interessant für Ingenieure und Naturwissenschaftler, die bereits mit optischen Technologien befasst sind oder aber sich einen Zugang erarbeiten wollen.

Das Aufgabenbuch ist genauso gegliedert wie sein großer Bruder, das Lehrbuch. Zu allen sieben Grundlagenkapiteln desselben wurden passende Übungsaufgaben formuliert und auf das Lehrbuch abgestimmt. Sämtliche Verweise auf Kapitel, Gleichungen, Bilder und Tabellen des Lehrbuches werden zur Unterscheidung kursiv dargestellt. Die Verweise innerhalb dieses Buches bleiben in Standardschrift.

Ich bedanke mich für die hervorragende Betreuung durch meine Lektorin, Frau Natalia Silakova sowie Frau Katrin Wulst vom Fachbuchverlag Leipzig im Carl Hanser Verlag. Mein besonderer Dank gilt meiner Frau, die wieder einmal viel Geduld aufgebracht hat während der Entstehungszeit des Werks.

Meinen Leserinnen und Lesern wünsche ich nützliche Erkenntnisse auf dem Gebiet der Optik und Photonik. Vor allem aber hoffe ich, dass sie dieselbe Faszination erfahren wie ich, der ich als 13-jähriger Schüler erstmals mit optischen Phänomenen Bekanntschaft machte und seither davon begeistert bin.

Für Hinweise und Verbesserungsvorschläge bin ich stets dankbar.

Köngen, im April 2018

Rolf Martin

Inhalt

Vorwort .	• • •	•	••	• •	••	•	• •	•	•	•	• •	• •	٠	•	• •	•	٠	• •	• •	٠	•	• •	۰	٠	•	••	•	•	• •	٠	•	• •	•	•	٠	• •	٠	• 4	7
Zum Geleit		•	• •	• •		•	• •	•	•	•	• •		•	•	• •	• •	•	• •	• •	•	•	• •	•	•	•	• •	•	•	• •	•	•		•	•	•		•	2	1

Teil I Aufgaben

1	Ein	leitung	g								
	1.1 1.2	Lichtw Wellen	ellenlängen								
2	Geo	ometrische Optik2									
	2.1 2.2 2.3	Lichtst Fermat Reflexi 2.3.1 2.3.2 2.3.3 2.3.4	rahlen, optische Abbildung27r'sches Prinzip27on von Lichtstrahlen27Reflexionsgesetz aus Fermat'schem Prinzip27Winkelspiegel27Rotierende Flüssigkeit als Parabolspiegel28Konstruktive Verfolgung eines schiefen Strahls bei einem Spiegel28								
	2.4	2.3.5 2.3.6 2.3.7 2.3.8 Brechu 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	Abbildung eines weit entfernten Gegenstands durch einen Hohlspiegel 28 Newton'sche Abbildungsgleichung beim Hohlspiegel 29 Abbildung durch Hohl- und Wölbspiegel 29 Vergrößerung eines Kosmetikspiegels 29 Ing des Lichts 30 Brechungsgesetz aus Fermat'schem Prinzip 30 Codenummern optischer Gläser 30 Brechung an einem Glaswürfel 30 Brechung und Totalreflexion an einem Prisma 30 Brechzahlbestimmung 31								
	2.5	2.4.5 2.4.6 2.4.7 Brechu 2.5.1 2.5.2	Numerische Apertur einer Glasfaser 31 Minimaler Ablenkwinkel am Prisma 31 ing an gekrümmten Flächen 31 Kartesisches Ovaloid 31 Vergleich Kartesisches Ovaloid und Kugelfläche 32								

	2.5.3	Stablinse mit Abbe'scher Invariante	32
	2.5.4	Kugellinse mit Abbe'scher Invariante	33
	2.5.5	Kugelförmiges Aquarium	33
2.6	Abbild	ung durch Linsen	33
	2.6.1	Linse an Luft und Wasser	33
	2.6.2	Brennweite in Abhängigkeit vom umgebenden Medium	33
	2.6.3	Linsenschleifergleichung	33
	2.6.4	Linsenschleifergleichung	34
	2.6.5	Bessel-Verfahren zur Brennweitenbestimmung	34
	2.6.6	Abbildungsfälle bei einer Sammellinse	34
	2.6.7	Abbildungsfälle bei einer Zerstreuungslinse	34
	2.6.8	Abbildung eines weit entfernten Gegenstandes	35
	2.6.9	Linsensystem mit drei Linsen	35
	2.6.10	Dicke Linse, Fermat'sches Prinzip	35
	2.6.11	Abbildung durch eine dicke Plankonvexlinse	36
	2.6.12	Brennweite einer dicken Plankonvexlinse	36
	2.6.13	Brennweite und Hauptebenen einer dicken Meniskuslinse	36
	2.6.14	Brechkraft einer dicken Bikonvexlinse	36
	2.6.15	Stablinse	36
	2.6.16	Anamorphotische Abbildung	37
	2.6.17	Linsensystem aus zwei Sammellinsen	37
	2.6.18	Linsensystem aus Sammel- und Zerstreuungslinse	37
	2.6.19	Achromat	38
2.7	Matrix	methoden der Gauß'schen Optik	38
	2.7.1	Laserschneidkopf	38
	2.7.2	Dreilinsiges System	39
	2.7.3	Systemmatrix	39
	2.7.4	Kollimation mit GRIN-Linse	40
	2.7.5	Abbildung mit GRIN-Linse	40
	2.7.6	Unterwasserlampe	40
	2.7.7	Dünne Linse in verschiedenen Medien	41
	2.7.8	Kombination aus Zerstreuungslinse und Hohlspiegel	41
2.8	Strahlb	pegrenzungen	41
	2.8.1	Pupillen	41
	2.8.2	Pupillenlagen und Öffnungswinkel	41
	2.8.3	Pupillen und Öffnungswinkel eines Systems	42
	2.8.4	Luken	42
	2.8.5	Luken und Pupillen	42
	2.8.6	Fernrohr mit Feldblende und Feldlinse	42
2.9	Abbild	ungsfehler	43
	2.9.1	Fehlerarten	43
	2.9.2	Farbfehler	43
	2.9.3	Linsenanordnung für minimalen Öffnungsfehler	43
	2.9.4	Linse bester Form	43
	2.9.5	Reduktion der Koma	43
	2.9.6	Beseitigung des Astigmatismus	44
	2.9.7	Achromatisches Dublett	44

	2.10	0 Optiscl	he Instrumente	44
		2.10.1	Augenmodell mit Matrizenmethoden	44
		2.10.2	Akkomodation der Augenlinse	45
		2.10.3	Korrektur der Kurzsichtigkeit mit Kontaktlinse	45
		2.10.4	Lupenvergrößerung	46
		2.10.5	Huygens-Okular	46
		2.10.6	Mikroskopvergrößerung	46
		2.10.7	Förderliche Vergrößerung eines Mikroskops	46
		2.10.8	Astronomisches Fernrohr.	47
		2.10.9	Galilei'sches Fernrohr	47
		2.10.1	0 Auflösungsvermögen einer Digitalkamera	47
		2.10.1	1 Schärfentiefe bei Nahaufnahmen	48
3	Rad	lio- un	d Fotometrie	49
	3 1	Strahlı	ungenhyeikalische Größen Radiometrie	40
	5.1	2 1 1	Kollimationsaushouta hai Kugalstrahlar	
		3.1.1	Kollimationsausbeute bei Lambart Strahlar	
		3.1.2	Abstrahlung einer I ED	
		3.1.3	Abstrainung einer LED	50
		3.1.4	Ebene Flache stramt auf Detektor	
		3.1.5	Strandichte einer dillus reliektierenden Flache	
		3.1.0	wien sches verschiedungsgesetz Chafen Baltemann Gaaste	
		3.1./	Steran-Boltzmann-Gesetz	
		3.1.8		
	3.2	Erfass	en und Transfer der Strahlung von Lampen	
		3.2.1	Kenngroßen	
		3.2.2	Ulbrichtkugel.	
		3.2.3	Bestrahlungsstarke in der Ulbrichtkugel	
	3.3	Lichtte	echnische Größen, Fotometrie	
		3.3.1	Lichtstrom einer roten LED	53
		3.3.2	Lichtstrom einer Wolfram-Halogen-Lampe	53
		3.3.3	Hellempfindlichkeitsgrad	54
		3.3.4	Abstrahlcharakteristik einer LED	54
		3.3.5	Straßenbeleuchtung	55
	3.4	Lichtte	echnische Größen, Fotometrie	55
		3.4.1	Farbwertanteile eines schwarzen Strahlers	55
		3.4.2	Farbwertanteile einer LED	55
		3.4.3	Farbwertanteile einer Wolfram-Halogen-Lampe	57
		3.4.4	Farbmischung	57
4	We	llenop	tik	
	4.1	Elektro	omagnetische Wellen	59
		4.1.1	Sichtbares Spektrum	59
		4.1.2	Wellengleichung in Abhängigkeit von der Laufrichtung	59
		4.1.3	Laufrichtung einer Welle	59
		4.1.4	Kugelwelle	59
		4.1.5	Ebene Wellen in verschiedenen Richtungen	60

	4.1.6	Feldstärken solarer Strahlung	60
4.2	Polaris	ation des Lichts	60
	4.2.1	Polarisationsformen	60
	4.2.2	Jones-Vektoren	60
	4.2.3	Interpretation von Jones-Vektoren	61
	4.2.4	Gesetz von Malus	61
	4.2.5	Viertel- und Halbwellenplatte	61
	4.2.6	Jones Matrizen	61
	4.2.7	Polarisation durch Reflexion	61
	4.2.8	Polarisationsfolien	62
	4.2.9	Gesetz von Malus mit realen Polarisatoren	62
	4.2.10	Indexellipsoid in einachsigen Kristallen	62
	4.2.11	Glan-Taylor-Prisma	62
	4.2.12	Rochon-Prisma	63
	4.2.13	$\lambda/2$ -Platte nullter Ordnung	63
	4.2.14	Licht-Modulator	64
4.3	Lichtw	ellen an Grenzflächen	64
	4.3.1	Fresnel'sche Gleichungen	64
	4.3.2	Fresnel-Rhombus	64
	4.3.3	Totalreflexion	64
	4.3.4	Reflexion an einer Metalloberfläche	65
4.4	Interfe	renz	65
	4.4.1	Gangunterschied	65
	4.4.2	Zweistrahlinterferenz	65
	4.4.3	Laser-Array	66
	4.4.4	Doppelspalt	66
	4.4.5	Kohärenzeigenschaften eines Halbleiterlasers	66
	4.4.6	Kohärenzeigenschaften einer Spektrallampe	67
	4.4.7	Gruppenindex	67
	4.4.8	Gruppenindex von Quarzglas	67
	4.4.9	Holografisches Gitter	67
	4.4.10	Stehende Wellen im Laser-Resonator	68
	4.4.11	Farbreflexe einer Seifenlamelle	68
	4.4.12	Fizeau-Streifen.	69
	4.4.13	Reflexvermindernde Einfachschicht	69
	4.4.14	Reflexvermindernde Einfachschicht für Unterwasserkamera	69
	4.4.15	Dielektrischer Spiegel	69
	4.4.16	Michelson-Interferometer.	70
	4.4.17	Warmeausdehnung mit Michelson-Interferometer	70
	4.4.18	Fabry-Perot-Interferometer	
4.5	Beugu	ng	
	4.5.1	Huygens sches Prinzip	/1
	4.5.2	Spaltbeugung.	71
	4.5.3	Intensitatsverhaltnisse bei der Spaltbeugung	72
	4.5.4	Linsentokus	72
	4.5.5	Autlosungsvermögen des Auges und Pixelbilder	72
	4.5.6	Airy-Scheibchen	72

		4.5.7	Doppelspalt	73
		4.5.8	Auflösung eines Gitters	73
		4.5.9	Spektrometer mit Reflexionsgitter	74
		4.5.10	Lineare Dispersion	74
	4.6	Gauß's	che Strahlen.	74
		4.6.1	Strahlradius	74
		4.6.2	Lunar Laser Ranging	74
		4.6.3	Gaußstrahl	75
		4.6.4	Laserfokussierung	75
		4.6.5	Laser mit geringer Divergenz	76
	4.7	Hologra	afie	
		471	Weißlichthologramm	76
		472	Intensitätsverlauf hei Hologramm-Belichtung	77
		7.7.2		,
5	Qua	anteno	ptik	79
	F 1	Lichter	•	70
	5.I			79
		5.1.1	Außerer Fotoeniekt	79
		5.1.2		79
		5.1.3	Lichtdruck	/9
		5.1.4	Druck solarer Photonen	80
		5.1.5	Photonenenergien und -impulse	81
	5.2	Welle-1	eilchen-Dualismus	81
		5.2.1	Antreffwahrscheinlichkeit gebeugter Photonen	81
	5.3	Absorp	tion und Emission von Licht	82
		5.3.1	Photonabsorption	82
		5.3.2	Impuls- und Energieerhaltung bei der Emission	82
		5.3.3	Lebensdauer angeregter Elektronen und spektrale Linienbreite	82
	5.4	Laser		83
		5.4.1	Verstärkung eines Lasers	83
		5.4.2	Reflexionsgrad von Laserspiegeln	83
		5.4.3	Frequenzänderung infolge von Längenänderung	83
		5.4.4	Monomode-Laser	83
		5.4.5	Laser-Pulse	83
		5.4.6	Femtosekundenlaser	84
6	Ont	alakt	ronik	95
0	Opt	UCIERI		05
	6.1	Halblei	ter-Sender	85
		6.1.1	Temperaturdrift der LED-Farbe	85
		6.1.2	Wirkungsgrade einer LED	85
		6.1.3	Plastik-Vergusskörper einer LED.	85
		6.1.4	Modulation einer IRED	86
		6.1.5	Temperaturabhängigkeit der Laserschwelle	87
		6.1.6	Abstand longitudinaler Moden	87
		6.1.7	Modensprünge	87
		6.1.8	Modulation eines Halbleiterlasers	88
		6.1.9	Laserschwelle	88

		6.1.10	DFB-Laser	8
	6.2	Halblei	ter-Detektoren	9
		6.2.1	Eindringtiefe von Photonen 8	9
		6.2.2	Quantenausbeute und Empfindlichkeit	9
		6.2.3	Detektivität von pin-Fotodioden	9
		6.2.4	Lawinenfotodiode	9
7	Füh	nrung N	on Licht in Lichtwellenleitern	1
	7.1	Einleit	ung	1
		7.1.1	Eigenschaften von Lichtwellenleitern9	1
	7.2	Schicht	twellenleiter	1
		7.2.1	Doppelheterostruktur	1
	7.3	Wellen	in zylindrischen Fasern	1
		7.3.1	Stufenindex-Faser	1
		7.3.2	Monomode-Faser	2
		7.3.3	Zusammensetzung des Faserkerns	2
	7.4	Dämpf	ung in Lichtwellenleitern	2
		7.4.1	Dämpfungskoeffizient	2
		7.4.2	Dämpfung in PMMA9	3
		7.4.3	Abschneidemethode	3
		7.4.4	Wechsel des Sendelasers	3
		7.4.5	Nachrichtenübertragung auf POF9	3
	7.5	Dispers	sion im Lichtwellenleiter	4
		7.5.1	Bitrate einer Stufenindex-Faser	4
		7.5.2	Bitrate einer Plastikfaser	4
		7.5.3	Kombination von Dispersionsmechanismen	4

Teil II Lösungen

1	Ein	leitung	gg	.97
	1.1 1.2	Lichtw Wellen	ellenlängen	. 97 . 97
2	Geo	ometri	sche Optik	.99
	2.1	Lichtst	rahlen, optische Abbildung	. 99
	2.3	Reflexi	ion von Lichtstrahlen	. 99
		2.3.1	Reflexionsgesetz aus Fermat'schem Prinzip	. 99
		2.3.2	Winkelspiegel	. 99
		2.3.3	Rotierende Flüssigkeit als Parabolspiegel	. 100
		2.3.4	Konstruktive Verfolgung eines schiefen Strahls bei einem Spiegel	. 101
		2.3.5	Abbildung eines weit entfernten Gegenstands durch einen	
			Hohlspiegel	. 101
		2.3.6	Newton'sche Abbildungsgleichung beim Hohlspiegel	101
		2.3.7	Abbildung durch Hohl- und Wölbspiegel	102

	2.3.8	Vergrößerung eines Kosmetikspiegels	102
2.4	Brechu	ng des Lichts	103
	2.4.1	Brechungsgesetz aus Fermat'schem Prinzip	103
	2.4.2	Codenummern optischer Gläser	104
	2.4.3	Brechung an einem Glaswürfel	104
	2.4.4	Brechung und Totalreflexion an einem Prisma	104
	2.4.5	Brechzahlbestimmung	105
	2.4.6	Numerische Apertur einer Glasfaser	105
	2.4.7	Minimaler Ablenkwinkel am Prisma	105
2.5	Brechu	ng an gekrümmten Flächen.	107
	2.5.1	Kartesisches Ovaloid.	10/
	2.5.2	Vergleich Kartesisches Ovaloid und Kugelflache	108
	2.5.3	Stablinse mit Abbe scher Invariante	108
	2.5.4	Kugellinse mit Abbe scher Invariante	109
0 (2.5.5	Kugelformiges Aquarium	109
2.0		Lings on Luft und Waggen	109
	2.0.1	Linse an Luit und Wasser	109
	2.0.2	Lingengebleifergleichung	110
	2.0.3	Linsenschleifergleichung	111
	2.0.4	Bossel Vorfahron zur Bronnweitenbestimmung	112
	2.0.5	Abbildungsfälle bei einer Sammellinse	112
	2.0.0	Abbildungsfälle bei einer Zerstreuungslinse	112
	2.6.8	Abbildung eines weit entfernten Gegenstandes	113
	2.6.0	Linsensystem mit drei Linsen	113
	2.6.10	Dicke Linse Fermat'sches Prinzin	114
	2.6.11	Abbildung durch eine dicke Plankonvexlinse	114
	2.6.12	Brennweite einer dicken Plankonvexlinse	115
	2.6.13	Brennweite und Hauptebenen einer dicken Meniskuslinse	115
	2.6.14	Brechkraft einer dicken Bikonvexlinse	115
	2.6.15	Stablinse	116
	2.6.16	Anamorphotische Abbildung	117
	2.6.17	Linsensystem aus zwei Sammellinsen	118
	2.6.18	Linsensystem aus Sammel- und Zerstreuungslinse	119
	2.6.19	Achromat	120
2.7	Matrix	methoden der Gauß'schen Optik	121
	2.7.1	Laserschneidkopf	121
	2.7.2	Dreilinsiges System	122
	2.7.3	Systemmatrix	123
	2.7.4	Kollimation mit GRIN-Linse	124
	2.7.5	Abbildung mit GRIN-Linse	125
	2.7.6	Unterwasserlampe	126
	2.7.7	Dünne Linse in verschiedenen Medien	128
	2.7.8	Kombination aus Zerstreuungslinse und Hohlspiegel	129
2.8	Strahlb	begrenzungen	130
	2.8.1	Pupillen	130
	2.8.2	Pupillenlagen und Offnungswinkel.	130

		2.8.3	Pupillen und Öffnungswinkel eines Systems	. 132
		2.8.4	Luken	. 132
		2.8.5	Luken und Pupillen	. 133
		2.8.6	Fernrohr mit Feldblende und Feldlinse	. 134
	2.9	Abbild	ungsfehler	. 135
		2.9.1	Fehlerarten	. 135
		2.9.2	Farbfehler	. 135
		2.9.3	Linsenanordnung für minimalen Öffnungsfehler	. 136
		2.9.4	Linse bester Form	. 136
		2.9.5	Reduktion der Koma	. 136
		2.9.6	Beseitigung des Astigmatismus	. 137
		2.9.7	Achromatisches Dublett	. 137
	2.10	Optisch	he Instrumente	. 137
		2.10.1	Augenmodell mit Matrizenmethoden	. 137
		2.10.2	Akkomodation der Augenlinse	. 139
		2.10.3	Korrektur der Kurzsichtigkeit mit Kontaktlinse	. 141
		2.10.4	Lupenvergrößerung	. 141
		2.10.5	Huygens-Okular	. 142
		2.10.6	Mikroskopvergrößerung	. 143
		2.10.7	Förderliche Vergrößerung eines Mikroskops	. 144
		2.10.8	Astronomisches Fernrohr.	. 144
		2.10.9	Galilei'sches Fernrohr	. 145
		2.10.10) Auflösungsvermögen einer Digitalkamera	. 146
		2.10.11	1 Schärfentiefe bei Nahaufnahmen	. 147
•				440
3	као	llo- un	a Fotometrie	149
	3.1	Strahlu	ıngsphysikalische Größen, Radiometrie	. 149
		3.1.1	Kollimationsausbeute bei Kugelstrahler	. 149
		3.1.2	Kollimationsausbeute bei Lambert-Strahler	. 149
		3.1.3	Abstrahlung einer LED	. 150
		3.1.4	Ebene Fläche strahlt auf Detektor	. 151
		3.1.5	Strahldichte einer diffus reflektierenden Fläche	. 152
		3.1.6	Wien'sches Verschiebungsgesetz	. 153
		3.1.7	Stefan-Boltzmann-Gesetz	. 153
		3.1.8	Lichtleitwert	. 154
	3.2	Erfasse	en und Transfer der Strahlung von Lampen	. 155
		3.2.1	Kenngrößen	. 155
		3.2.2	Ulbrichtkugel	. 156
		3.2.3	Bestrahlungsstärke in der Ulbrichtkugel	. 157
	3.3	Lichtte	chnische Größen, Fotometrie	. 158
		3.3.1	Lichtstrom einer roten LED	. 158
		3.3.2	Lichtstrom einer Wolfram-Halogen-Lampe	. 159
		3.3.3	Hellempfindlichkeitsgrad.	. 160
		3.3.4	Abstrahlcharakteristik einer LED	. 161
		3.3.5	Straßenbeleuchtung	. 161

		3.4.1 3.4.2 3.4.3 3.4.4	Farbwertanteile eines schwarzen StrahlersFarbwertanteile einer LEDFarbwertanteile einer Wolfram-Halogen-LampeFarbmischung	. 162 . 162 . 163 . 164
4	We	lenopt	tik	167
	4.1	Elektro	magnetische Wellen	. 167
		4.1.1	Sichtbares Spektrum	. 167
		4.1.2	Wellengleichung in Abhängigkeit von der Laufrichtung	. 167
		4.1.3	Laufrichtung einer Welle	. 167
		4.1.4	Kugelwelle	. 167
		4.1.5	Ebene Wellen in verschiedenen Richtungen	. 168
		4.1.6	Feldstärken solarer Strahlung	. 169
	4.2	Polaris	ation des Lichts	. 169
		4.2.1	Polarisationsformen	. 169
		4.2.2	Jones-Vektoren	. 169
		4.2.3	Interpretation von Jones-Vektoren	.171
		4.2.4	Gesetz von Malus	. 172
		4.2.5	Viertel- und Halbwellenplatte	.173
		4.2.6	Jones Matrizen	.174
		4.2.7	Polarisation durch Reflexion	. 176
		4.2.8	Polarisationsfolien	. 177
		4.2.9	Gesetz von Malus mit realen Polarisatoren	. 177
		4.2.10	Indexellipsoid in einachsigen Kristallen	. 178
		4.2.11	Glan-Taylor-Prisma	. 178
		4.2.12	Rochon-Prisma	.179
		4.2.13	λ /2-Platte nullter Ordnung	. 180
		4.2.14	Licht-Modulator	. 181
	4.3	Lichtwe	ellen an Grenzflächen	. 182
		4.3.1	Fresnel'sche Gleichungen	. 182
		4.3.2	Fresnel-Rhombus	. 184
		4.3.3	Totalreflexion	. 184
		4.3.4	Reflexion an einer Metalloberfläche	. 185
	4.4	Interfe	renz	.185
		4.4.1	Gangunterschied	.185
		4.4.2	Zweistrahlinterferenz	. 186
		4.4.3	Laser-Array	.187
		4.4.4	Doppelspalt	. 187
		4.4.5	Kohärenzeigenschaften eines Halbleiterlasers	. 188
		4.4.6	Kohärenzeigenschaften einer Spektrallampe	. 188
		4.4.7	Gruppenindex	. 188
		4.4.8	Gruppenindex von Quarzglas	. 189
		4.4.9	Holografisches Gitter	. 190
		4.4.10	Stehende Wellen im Laser-Resonator	. 190
		4.4.11	Farbreflexe einer Seifenlamelle	. 190
		4.4.12	Fizeau-Streifen.	. 191

		4.4.13	Reflexvermindernde Einfachschicht	192
		4.4.14	Reflexvermindernde Einfachschicht für Unterwasserkamera	192
		4.4.15	Dielektrischer Spiegel	193
		4.4.16	Michelson-Interferometer.	193
		4.4.17	Wärmeausdehnung mit Michelson-Interferometer	193
		4.4.18	Fabry-Perot-Interferometer	194
	4.5	Beugur	ן זפ	195
		4.5.1	Huvgens'sches Prinzip	195
		4.5.2	Spaltbeigung.	196
		453	Intensitätsverhältnisse bei der Spaltbeugung	197
		454	Linsenfokus	197
		4 5 5	Auflösungsvermögen des Auges und Pixelbilder	197
		4.5.6	Airy-Scheihchen	108
		4.5.7	Donnalcasit	100
		4.5.9	Auflögung ginge Cittore	200
		4.5.0	Snaktromator mit Daflovionsgittar	200
		4.5.10	Linoaro Disporsion	201
	16	4.J.10	che Strehlen	201
	4.0		Strahlradiug	201
		4.0.1	Su alli autus	202
		4.0.2	Coulotrahl	202
		4.0.3		202
		4.0.4		203
	4 7	4.0.5	Laser mit geringer Divergenz	204
	4./	Hologr		204
		4.7.1		204
		4./.2	Intensitätsverlauf bei Hologramm-Bellentung	205
5	Qua	anteno	ptik	. 207
			•	• • •
	5.1	Lichtqu	ianten	207
		5.1.1	Außerer Fotoeffekt	207
		5.1.2	Innerer Fotoeffekt	208
		5.1.3	Lichtdruck	208
		5.1.4	Druck solarer Photonen	208
		5.1.5	Photonenenergien und -impulse	209
	5.2	Welle-T	eilchen-Dualismus	209
		5.2.1	Antreffwahrscheinlichkeit gebeugter Photonen	209
	5.3	Absorp	tion und Emission von Licht	211
		5.3.1	Photonabsorption	211
		5.3.2	Impuls- und Energieerhaltung bei der Emission	211
		5.3.3	Lebensdauer angeregter Elektronen und spektrale Linienbreite	212
	5.4	Laser		213
		5.4.1	Verstärkung eines Lasers	213
		5.4.2	Reflexionsgrad von Laserspiegeln.	213
		5.4.3	Frequenzänderung infolge von Längenänderung	213
		5.4.4	Monomode-Laser	214
		5.4.5	Laser-Pulse.	214

		5.4.6	Femtosekundenlaser	. 215			
6	Opt	toelektronik					
	6.1	Halblei 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.1.10 Halblei 6.2.1 6.2.2 6.2.3 6.2.4	iter-Sender . Temperaturdrift der LED-Farbe . Wirkungsgrade einer LED . Plastik-Vergusskörper einer LED . Modulation einer IRED . Temperaturabhängigkeit der Laserschwelle . Abstand longitudinaler Moden . Modensprünge . Modulation eines Halbleiterlasers . Laserschwelle . DFB-Laser . Eindringtiefe von Photonen . Quantenausbeute und Empfindlichkeit . Detektivität von pin-Fotodioden . Lawinenfotodiode .	. 217 . 217 . 217 . 218 . 218 . 219 . 219 . 220 . 221 . 221 . 222 . 222 . 222 . 222 . 223 . 223			
7	Füh	Führung von Licht in Lichtwellenleitern 225					
	7.1	Einleitu 7.1.1	ung Eigenschaften von Lichtwellenleitern	. 225 . 225			
	7.2 Schichtwellenleiter			. 225 . 225			
	7.3	Wellen 7.3.1 7.3.2 7.3.3	in zylindrischen Fasern. Stufenindex-Faser Monomode-Faser Zusammensetzung des Faserkerns	. 227 . 227 . 227 . 227 . 228			
	7.4	Dämpfu 7.4.1 7.4.2	Dämpfungskoeffizient	. 229 . 229 . 229 . 230			
	7.5	7.4.3 7.4.4 7.4.5 Dispers	Abschneidemetnode	. 230 . 231 . 231 . 232			
	,	7.5.1 7.5.2 7.5.3	Bitrate einer Stufenindex-Faser Bitrate einer Plastikfaser Kombination von Dispersionsmechanismen	. 232 . 233 . 233			

TEIL I Aufgaben

2.5.4 Kugellinse mit Abbe'scher Invariante

Welchen Brechungsindex müsste eine transparente Kugel haben, damit ein durch die Mitte gehendes paralleles Strahlenbündel auf einem gegenüber liegenden Punkt auf der Kugeloberfläche fokussiert würde? Die Kugel befindet sich an Luft.

2.5.5 Kugelförmiges Aquarium

Ein Fisch schwimmt in der Mitte eines kugelförmigen Aquariums mit dem Durchmesser 32 cm. Wo erscheint das Bild des Fisches, wenn der Einfluss des dünnen Glases auf die Brechung der Lichtstrahlen vernachlässigt wird?

2.6 Abbildung durch Linsen

2.6.1 Linse an Luft und Wasser

Die Konvexseite einer dünnen Plankonvexlinse ($n_L = 1,6$) hat einen Krümmungsradius von r = +120 mm. Die Linse ist auf der Planseite von Wasser umgeben ($n_W = 1,333$) und auf der Konvexseite von Luft.

- a) Wie groß ist die Brennweite der Linse auf der Wasser- bzw. Luftseite?
- b) We entsteht das Bild eines Gegenstandes, der im Abstand a = -300 mm vor der Linse (in der Luft) steht? Wie groß ist der Abbildungsmaßstab?
- c) Konstruieren Sie die Abbildung.

2.6.2 Brennweite in Abhängigkeit vom umgebenden Medium

Welche Brennweite f'_W hat eine Glaslinse in Wasser ($n_W = 4/3$), wenn sie an Luft die Brennweite f'_L besitzt? Welche Rolle spielt die Brechzahl n_L des Linsenmaterials?

2.6.3 Linsenschleifergleichung

Eine Linse aus Flintglas hat den Krümmungsradius $r_1 = 400$ mm. Der Brechungsindex des Glases beträgt $n_L = 1,62$. Welchen Radius muss die zweite Fläche haben, damit die Brechkraft der Linse D' = 2 dpt beträgt? Welche Form hat die Linse?

2.6.4 Linsenschleifergleichung

Stellen Sie die Brechkraft D' einer dünnen Linse grafisch dar in Abhängigkeit vom Verhältnis r_1/r_2 der Krümmungsradien der beiden Kugelflächen. Die Brechzahl des Glases sei $n_L = 1,5$, der Krümmungsradius der linken Fläche $r_1 = 100$ mm.

Für welche Radienverhältnisse r_1/r_2 liegt eine Sammel- bzw. Zerstreuungslinse vor?

2.6.5 Bessel-Verfahren zur Brennweitenbestimmung

Zur experimentellen Bestimmung der Brennweite einer Linse wird auf einer optischen Bank ein leuchtender Gegenstand und eine Mattscheibe im Abstand l = 1 m angeordnet. Zwischen Gegenstand und Mattscheibe wird die zu vermessende Linse auf einen Verschiebereiter gesteckt. Durch Verschieben der Linse wird festgestellt, dass ein scharfes, vergrößertes Bild auf der Mattscheibe entsteht, wenn sich die Linse im Abstand 30 cm vom Gegenstand befindet.

- a) Wie groß ist die Brennweite f' der Linse?
- b) In welcher Entfernung vom Gegenstand muss sich die Linse befinden, damit wieder eine scharfe Abbildung entsteht, allerdings eine Verkleinerung, entsteht?

2.6.6 Abbildungsfälle bei einer Sammellinse

Gegeben sei eine dünne Sammellinse der Brennweite f' = 10 cm. Berechnen Sie für verschiedene Gegenstandsweiten *a* die Bildweite *a'* sowie den Abbildungsmaßstab β' und klassifizieren Sie die Abbildung (reell/virtuell, kopfstehend/aufrecht, vergrößert/verkleinert). Ergänzen Sie die Tabelle.

<i>a</i> /cm	a'/cm	β΄	Abbildung
-100			
-20			
-10			
-5			

2.6.7 Abbildungsfälle bei einer Zerstreuungslinse

Machen Sie dieselben Überlegungen wie in Aufgabe 2.6.6 aber mit einer Zerstreuungslinse der Brennweite f' = -10 cm.

Ergänzen Sie die Tabelle.

<i>a</i> /cm	a'/cm	β'	Abbildung
-100			
-20			
-10			
-5			

2.6.8 Abbildung eines weit entfernten Gegenstandes

Mit einer Sammellinse der Brennweite f' = 20 cm soll die Sonne auf einer Mattscheibe abgebildet werden. Die Sonne erscheint von der Erde aus unter dem Winkel $\sigma = 32'$ (Winkelminuten).

In welchem Abstand von der Linse erscheint das Sonnenbild und wie groß ist es?

Warnung! Die Leistungsdichte im Fokus ist extrem hoch und Gegenstände werden angezündet.

2.6.9 Linsensystem mit drei Linsen

Die Abbildung durch ein System aus drei dünnen Linsen soll sukzessive durchgerechnet werden. Die Linsen haben die Brennweiten $f'_1 = 30 \text{ mm}$, $f'_2 = -75 \text{ mm}$, $f'_3 = 15 \text{ mm}$ sowie die Abstände $e_{12} = 30 \text{ mm}$, $e_{23} = 90 \text{ mm}$.

Wo entsteht das Bild eines Gegenstands, der 60 mm vor der ersten Linse steht und wie groß ist der Abbildungsmaßstab?

2.6.10 Dicke Linse, Fermat'sches Prinzip

Durch eine dicke, symmetrische Bikonvexlinse wird ein Objektpunkt O auf der optischen Achse in einen Bildpunkt O' abgebildet, wobei die beiden Punkte von den jeweiligen Linsenscheiteln den Abstand 187,5 mm haben. Die Linse hat den Durchmesser D = 48 mm und die Dicke d = 6 mm.

Bestimmen Sie den Brechungsindex n_L des Linsenmaterials mithilfe des Fermat'schen Prinzips, wonach bei einer optischen Abbildung der optische Weg für alle an der Abbildung teilnehmenden Strahlen gleich lang sein muss.

2.6.11 Abbildung durch eine dicke Plankonvexlinse

Gegeben ist eine plankonvexe Linse mit den Daten $r_1 = \infty$, $r_2 = -40$ mm, d = 20 mm und $n_L = 1,7$.

- a) Wie groß ist die bildseitige Brennweite f' der Linse?
- b) Wo befinden sich die Hauptebenen H und H' relativ zu den Scheiteln?
- c) Im Abstand $s_0 = -120$ mm von der ebenen Fläche befindet sich ein Objekt. In welcher Entfernung $s'_{0'}$ von der Kugelfläche entsteht das Bild?
- d) Wie groß ist der Abbildungsmaßstab β' ?

2.6.12 Brennweite einer dicken Plankonvexlinse

Wie hängt bei einer Plankonvexlinse die Brennweite von der Linsendicke ab?

2.6.13 Brennweite und Hauptebenen einer dicken Meniskuslinse

Wie groß ist die Brennweite f' einer Meniskuslinse mit $r_1 = r_2 = r$ und der Dicke d? Wo liegen die Hauptebenen? Zeichnen Sie maßstäblich die Brechung eines von links kommenden achsenparallelen Strahls für r = 50 mm, d = 30 mm und $n_L = 1,7$.

2.6.14 Brechkraft einer dicken Bikonvexlinse

Wie hängen die Brennweite f' und die Brechkraft D' einer dicken, symmetrischen Bikonvexlinse von ihrer Dicke d ab?

Zeichnen Sie ein Diagramm für $r_1 = -r_2 = r = 100 \text{ mm}$ und $n_L = 1,5 \text{ für } 0 \le d \le 100 \text{ mm}$. Gibt es eine Linsendicke, für welche die Brechkraft null wird, d. h. die Brennweite unendlich?

2.6.15 Stablinse

Stablinsen sind zylindrische Gläser, die an einem oder beiden Enden sphärisch gekrümmt sind. Sie werden u. a. in der Endoskopie und Faseroptik zur Lichtleitung eingesetzt.

Ein Hersteller bietet eine Stablinse mit folgenden Spezifikationen an:

 $D = 2 \text{ mm}, R = 1,25 \text{ mm}, d = 2 \text{ mm}, \text{BK7-Glas mit } n_{\text{L}} = 1,517.$

Berechnen Sie die Brennweite der Linse an Luft sowie die Lagen der Hauptebenen und Brennpunkte. Welche Dicke *d* müsste die Linse haben, damit der gegenstandseitige Brennpunkt F mit der Planfläche zusammenfällt (siehe auch Aufgabe 2.5.3)?

TEIL II Lösungen

b) Die Brechung an der Planfläche geschieht nach dem Snellius'schen Brechungsgesetz:

 $n_{\rm L} \sin \sigma_1 = \sin \sigma_2$, $\sin \sigma_1 \approx \tan \sigma_1 = 1/24$, $\sigma_2 = 3,58^{\circ}$.

2.5.4 Kugellinse mit Abbe'scher Invariante

Aus der Abbe'schen Invariante $n\left(\frac{1}{r} - \frac{1}{s}\right) = n'\left(\frac{1}{r} - \frac{1}{s'}\right)$ folgt mit $s = -\infty, s' = 2r$ und n = 1 $\frac{1}{r} = n'\left(\frac{1}{r} - \frac{1}{2r}\right) = \frac{n'}{2r}$

und damit n' = 2.

2.5.5 Kugelförmiges Aquarium

Aus der Abbe'schen Invariante

$$n\left(\frac{1}{r} - \frac{1}{s}\right) = n'\left(\frac{1}{r} - \frac{1}{s'}\right)$$

folgt allgemein für den Bildort

$$s' = \frac{n'r}{n'-n\left(1-r/s\right)}.$$

Für s = r = -16 cm und n' = 1 ergibt sich s' = r = -16 cm. Das Bild befindet sich also an derselben Stelle wie der Gegenstand, nämlich in der Mitte der Kugel.

2.6 Abbildung durch Linsen

2.6.1 Linse an Luft und Wasser

a) Da der Krümmungsradius r_1 positiv ist, folgt, dass die Konvexseite links und die Planseite rechts steht.

Aus der *Abbildungsgleichung (2.34)* $\frac{n'}{a'} - \frac{n}{a} = \frac{n_{\rm L} - n}{r_{\rm l}} - \frac{n_{\rm L} - n'}{r_{\rm 2}}$ für beliebige dünne Linsen folgt mit $n = n_{\rm Luft} = 1$, $n' = n_{\rm W}$, $r_{\rm 1} = r$ und $r_{\rm 2} = \infty$:

$$\frac{n_{\rm W}}{a'} - \frac{1}{a} = \frac{n_{\rm L} - 1}{r}.$$

Für $a = -\infty$, entspricht der Bildort dem Brennpunkt. Damit wird die Brennweite im Wasser $f'_W = \frac{n_W}{n_L - 1} r = 266,6 \text{ mm}.$

Setzt man andererseits den Bildort ins Unendliche, d. h. $a' = \infty$, dann entspricht der zugehörige Gegenstandsort dem gegenstandseitigen Brennpunkt mit der Brennweite $f_{\rm L} = \frac{r}{1-n_{\rm L}} = -200$ mm an Luft. b) Aus $\frac{n_{\rm W}}{a'} - \frac{1}{a} = \frac{n_{\rm L} - 1}{r}$ folgt für die Bildweite $a' = \frac{n_{\rm W}}{\frac{1}{a} + \frac{n_{\rm L} - 1}{r}} = 799,8$ mm. Der Abbildungsmaßstab ist nach *Gl. (2.36)* $\beta' = \frac{na'}{n'a} = \frac{a'}{n_{\rm W}a} = -2.$ ^{C)} Luft *n* F_L ^K ^K ^K ^K

2.6.2 Brennweite in Abhängigkeit vom umgebenden Medium

Die *Abbildungsgleichung (2.34)* $\frac{n'}{a'} - \frac{n}{a} = \frac{n_{\rm L} - n}{r_{\rm l}} - \frac{n_{\rm L} - n'}{r_{\rm 2}}$ für beliebige dünne Linsen vereinfacht sich zu $n\left(\frac{1}{a'} - \frac{1}{a}\right) = (n_{\rm L} - n)\left(\frac{1}{r_{\rm l}} - \frac{1}{r_{\rm 2}}\right)$, wenn sich auf beiden Seiten der Linse dasselbe Medium mit der Brechzahl *n* befindet.

Setzt man die Gegenstandsweite $a = -\infty$, dann stimmt die Bildweite a' mit der Brennweite f' überein und es ergibt sich für die Brechkraft

- an Luft (n = 1): $\frac{1}{f'_{L}} = (n_{L} 1) \left(\frac{1}{r_{1}} \frac{1}{r_{2}}\right),$
- in Wasser: $\frac{1}{f'_W} = \left(\frac{n_L}{n_W} 1\right) \left(\frac{1}{r_1} \frac{1}{r_2}\right).$

Das Verhältnis der Brennweiten beträgt $\frac{f'_W}{f'_L} = \frac{n_L - 1}{n_L/n_W - 1}.$ Konkret ergibt sich für $n_L = 1,5$: $\frac{f'_W}{f'_L} = 4$, für $n_L = 1,6$: $\frac{f'_W}{f'_L} = 3$, für $n_L = 1,7$: $\frac{f'_W}{f'_L} = 2,54$ usw.

Die Brennweite im Wasser wird demnach sehr groß für Gläser mit kleiner Brechzahl und nimmt mit steigender Brechzahl ab.

2.6.3 Linsenschleifergleichung

Aus der Linsenschleiferformel (2.39)

$$D' = \frac{1}{f'} = (n_{\rm L} - 1) \left(\frac{1}{r_{\rm l}} - \frac{1}{r_{\rm 2}}\right)$$

folgt für den gesuchten Radius

$$r_2 = \left[\frac{1}{r_1} - \frac{D'}{n_{\rm L} - 1}\right]^{-1} = -1\,378\,\,{\rm mm}$$

Es handelt sich um eine unsymmetrische Bikonvexlinse.

2.6.4 Linsenschleifergleichung

Nach der Linsenschleiferformel (2.39) beträgt die Brechkraft einer Linse

$$D' = \frac{1}{f'} = (n_{\rm L} - 1) \left(\frac{1}{r_{\rm l}} - \frac{1}{r_{\rm 2}} \right)$$

bzw. umgeformt

$$D' = \frac{n_{\rm L} - 1}{r_{\rm 1}} \left(1 - \frac{r_{\rm 1}}{r_{\rm 2}} \right).$$

Das folgende Diagramm veranschaulicht den Zusammenhang.

Für $r_1/r_2 < 1$ wirkt die Linse als Sammellinse, für $r_1/r_2 > 1$ als Zerstreuungslinse. Wenn beide Krümmungsradien gleich sind, ist die Brechkraft null.

2.6.5 Bessel-Verfahren zur Brennweitenbestimmung

a) Die *Abbildungsgleichung (2.4.1)* $\frac{1}{a'} - \frac{1}{a} = \frac{1}{f'}$ liefert mit der Nebenbedingung -a + a' = l die Beziehung

$$\frac{1}{a+l} - \frac{1}{a} = \frac{1}{f'}$$
(1)

und damit die Brennweite $f' = \left\lfloor \frac{1}{a+l} - \frac{1}{a} \right\rfloor = \left\lfloor \frac{1}{(-30+100)} \operatorname{cm} + \frac{1}{30} \operatorname{cm} \right\rfloor = 21 \operatorname{cm}$ b) Löst man die Gleichung (1) nach *a* auf, ergibt sich die quadratische Gleichung

b) Löst man die Gleichung (1) nach *a* auf, ergibt sich die quadratische Gleichung $a^2 + al + lf' = 0$. Es existieren daher zwei Lösungen für mögliche Gegenstandsweiten:

$$a_{1,2} = -\frac{l}{2} \pm \sqrt{\left(\frac{l}{2}\right)^2 - lf'}.$$

Die möglichen Gegenstandsweiten sind

$$a_1 = -\frac{l}{2} - \sqrt{\left(\frac{l}{2}\right)^2 - lf'} = -30 \text{ cm} \text{ und } a_2 = -\frac{l}{2} + \sqrt{\left(\frac{l}{2}\right)^2 - lf'} = -70 \text{ cm}.$$

Die beiden möglichen Linsenstellungen sind symmetrisch zum Mittelpunkt zwischen Gegenstand und Mattscheibe (s. "Brennweitenbestimmung nach Bessel" in *Abschn. 2.6.2*).

2.6.6 Abbildungsfälle bei einer Sammellinse

<i>a</i> /cm	<i>a</i> ′/cm	β'	Abbildung
-100	+11,1	-0,111	reell, kopfstehend, verkleinert
-20	+20	-1	reell, kopfstehend, Objekt und Bild sind gleich groß
-10	x	∞	keine Abbildung im Endlichen
-5	-10	+2	virtuell, aufrecht, vergrößert

Siehe auch Tabelle 2.5 und Bild 2.31.

2.6.7 Abbildungsfälle bei einer Zerstreuungslinse

<i>a</i> /cm	a'/cm	β'	Abbildung
-100	-9,09	0,0909	virtuell, aufrecht, verkleinert
-20	-6,67	0,333	dto.
-10	-5	0,500	dto.
-5	-3,33	0,667	dto.

Siehe auch *Tabelle 2.5* und *Bild 2.32*.

2.6.8 Abbildung eines weit entfernten Gegenstandes

Die Sonne ist praktisch unendlich weit entfernt. Daher erscheint ihr Bild in der Brennebene durch F'. Alle Strahlen, die vom unteren Sonnenrand stammen gehen als Parallelstrahlen durch die Linse. Der Bildpunkt ist dort, wo der Mittelpunktstrahl, der die Linse ungebrochen durchsetzt, die Brennebene schneidet.

Für den Radius des Sonnenbilds ergibt sich $r' = f' \tan(\sigma/2) \approx f' \sigma/2$. Der Durchmesser des Sonnenbilds ist doppelt so groß: $d' \approx f' \sigma = 0, 2 \text{ m} \frac{32 \cdot \pi}{60.180} \text{ rad} = 1,86 \text{ mm}$.

2.6.9 Linsensystem mit drei Linsen

Für die jeweilige Gegenstandsweite *a* wird gemäß *Abbildungsgleichung (2.41)* die zugehörige Bildweite $a' = \frac{a \cdot f'}{a + f'}$ berechnet.

Abbildung durch die erste Linse:

Gegenstandsweite: $a_1 = -60 \text{ mm}$, Bildweite: $a_1' = 60 \text{ mm}$, Abbildungsmaßstab: $\beta_1' = -1$.

Abbildung durch die zweite Linse:

Gegenstandsweite: $a_2 = a_1' - e_{12} = +20$ mm, Bildweite: $a_2' = +30$ mm, Abbildungsmaßstab: $\beta_2' = +1,5$.

Abbildung durch die dritte Linse:

Gegenstandsweite: $a_3 = a_2' - e_{23} = -50$ mm, Bildweite: $a_3' = +33,33$ mm, Abbildungsmaßstab: $\beta_3' = -0,667$.

Gesamter Abbildungsmaßstab: $\beta' = \beta'_1 \cdot \beta'_2 \cdot \beta'_3 = +1$.

2.6.10 Dicke Linse, Fermat'sches Prinzip

Optischer Weg der Randstrahlen: $l_{\rm R} = 2\sqrt{190,5^2 + 24^2} \text{ mm} = 384 \text{ mm}.$ Optischer Weg längs der optischen Achse: $l_{\rm oA} = 2 \cdot 187,5 \text{ mm} + n_{\rm L} \cdot 6 \text{ mm}.$ Aus $l_{\rm R} = l_{\rm oA}$ folgt für den Brechungsindex $n_{\rm L} = 1,5.$ Die Skizze ist nicht maßstäblich!

2.6.11 Abbildung durch eine dicke Plankonvexlinse

a) Die Brechkraft der dicken Linse beträgt nach Gl. (2.47):

$$\frac{1}{f'} = \left(n_{\rm L} - 1\right) \left(-\frac{1}{r_2}\right) = 17,5 \, \text{dpt} \,. \text{ Die Brennweite ist damit } f' = 57,1 \, \text{mm} \,.$$

b) Die Hauptebenen sind nach Gl. (2.50) relativ zu den Linsenscheiteln an den Orten

$$s'_{\mathrm{H}'} = -f' \frac{n_{\mathrm{L}} - 1}{n_{\mathrm{L}}} \frac{d}{r_{\mathrm{I}}} = 0$$
 und $s_{\mathrm{H}} = -f' \frac{n_{\mathrm{L}} - 1}{n_{\mathrm{L}}} \frac{d}{r_{\mathrm{2}}} = +11.8 \text{ mm}.$

- c) Die Gegenstandsweite beträgt a = -131,8 mm. Die Bildweite folgt aus der Abbildungsgleichung zu $a' = \frac{af'}{a+f'} = 101$ mm. Damit beträgt der Abstand von der Kugelfläche: $s'_{0'} = a' = 101$ mm.
- d) Der Abbildungsmaßstab beträgt $\beta' = \frac{a'}{a} = -0,77$.

Die Abbildung ist reell, kopfstehend und verkleinert.

2.6.12 Brennweite einer dicken Plankonvexlinse

Nach Gl. (2.47) ist die Brechkraft und damit die Brennweite unabhängig von der Linsendicke.

2.6.13 Brennweite und Hauptebenen einer dicken Meniskuslinse

Die Brennweite einer dicken Linse mit gleichen Krümmungsradien ist nach Gl. (2.48)

$$f' = \frac{n_{\rm L}}{n_{\rm L} - 1} \cdot \frac{r^2}{(n_{\rm L} - 1) d} = 289 \text{ mm}.$$

Die Hauptebenenabstände von den Scheiteln sind nach Gl. (2.50)

$$s'_{\rm H'} = -f' \frac{n_{\rm L} - 1}{n_{\rm L}} \frac{d}{r_{\rm l}} = -71,4 \text{ mm} \text{ und } s_{\rm H} = -f' \frac{n_{\rm L} - 1}{n_{\rm L}} \frac{d}{r_{\rm 2}} = s'_{\rm H'} = -71,4 \text{ mm}.$$

Bei der Zeichnung wird ein achsenparalleler Strahl bis zur Hauptebene H' gezeichnet und von dort zum Brennpunkt F'. Der tatsächliche Strahlengang durch die Linse ist gestrichelt.

2.6.14 Brechkraft einer dicken Bikonvexlinse

Für die Brechkraft einer symmetrischen Linse gilt nach Gl. (2.47)

$$D' = \frac{1}{f'} = (n_{\rm L} - 1) \frac{2}{r} - \frac{(n_{\rm L} - 1)^2}{n_{\rm L}} \cdot \frac{d}{r^2}.$$

Die Brechkraft nimmt mit zunehmender Dicke *d* linear ab. Sie wird null für die (unrealistisch große) Dicke

Die Brennweite ergibt sich aus dem Kehrwert der Brechkraft bzw. aus Gl. (2.48).

$$f' = \frac{n_{\mathrm{L}}}{n_{\mathrm{L}} - 1} \cdot \frac{r^2}{n_{\mathrm{L}} \cdot 2r - (n_{\mathrm{L}} - 1) \cdot d}.$$

Für die Dicke d = 600 mm würde die Brennweite unendlich groß.

2.6.15 Stablinse

Nach Gl. (2.47) ist die Brechkraft der Plankonvexlinse

$$\frac{1}{f'} = -\frac{n_{\rm L} - 1}{r_2} = \frac{n_{\rm L} - 1}{R}$$

und damit die Brennweite $f' = \frac{R}{n_{\rm L} - 1} = 2,42 \text{ mm}.$

Die Hauptebenen liegen nach Gl. (2.50) bei den Schnittweiten

$$s'_{H'} = -f' \frac{n_L - 1}{n_L} \cdot \frac{d}{r_1} = 0$$
 und $s_H = -f' \frac{n_L - 1}{n_L} \cdot \frac{d}{r_2} = f' \frac{n_L - 1}{n_L} \cdot \frac{d}{R} = 1,32 \text{ mm}.$

Die Brennpunkte liegen bei den Schnittweiten

 $s'_{\rm F'} = s'_{\rm H'} + f' = 2,42 \text{ mm}$ und $s_{\rm F} = s_{\rm H} - f' = -1,10 \text{ mm}.$

Wenn der Brennpunkt F auf der Planseite liegen soll, muss die Schnittweite $s_{\rm F}$ null sein.

Aus
$$s_{\rm F} = -f'\left(1 + \frac{n_{\rm L} - 1}{n_{\rm L}} \cdot \frac{d}{r_2}\right) = 0$$
 folgt für die erforderliche Dicke

$$d = -\frac{n_{\rm L}}{n_{\rm L} - 1} r_2 = \frac{n_{\rm L}}{n_{\rm L} - 1} R = 3,67 \text{ mm}.$$

2.6.16 Anamorphotische Abbildung

Aus dem Abbildungsmaßstab $\beta' = \frac{a'}{a}$ und der Bedingung -a + a' = l folgt die jeweilige Gegenstands- und Bildweite. Die erforderliche Brennweite ergibt sich aus der Abbildungsgleichung $-\frac{1}{a} + \frac{1}{a'} = \frac{1}{f'}$. Die Ergebnisse sind in nachfolgender Tabelle zusammengefasst.

Abbildung in 2	ĸ-Richtung		Abbildung in <i>y</i> -Richtung		
$\beta'_{x} = -3$	$a_x = -50 \text{ mm}$	$a'_{x} = 150 \text{ mm}$	$\beta'_y = -3/20$	$a_{y} = -174 \text{ mm}$	$a'_y = 26 \text{ mm}$