
Bastelvorlage Prisma

Aufgabe

Schneide die Bastelvorlage aus und baue daraus ein Prisma. Markiere im Anschluss die Flächen mit den gleichen Flächeninhalten farbig.

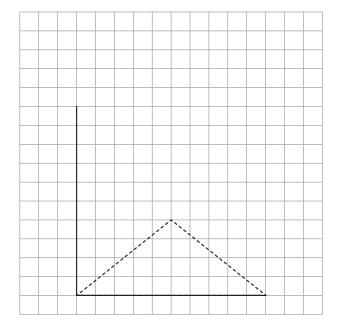
Prismo

Eigenschaften Prismen I

Aufgabe

Ergänze die angefangene Zeichnung zu einem Prisma und fertige einen Steckbrief an.

a)


Form der Grundfläche: _____

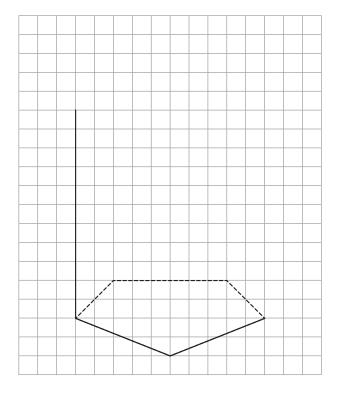
Name der Figur: _____

Anzahl Ecken:

Anzahl Kanten: _____

Anzahl Flächen: _____

b)


Form der Grundfläche:

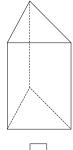
Name der Figur: _____

Anzahl Ecken: _____

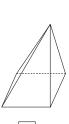
Anzahl Kanten: _____

Anzahl Flächen:

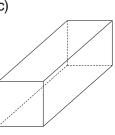
Eigenschaften Prismen II

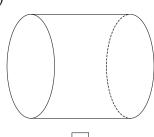

Aufgabe 1

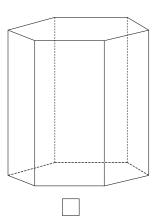
Beschreibe mit deinen eigenen Worten die Eigenschaften von Prismen.

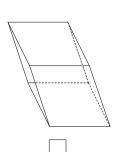

Aufgabe 2

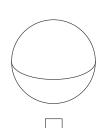
Welche der Körper sind gerade Prismen? Kreuze sie an. Markiere im Anschluss die Grundseite farbig.


a)


b)

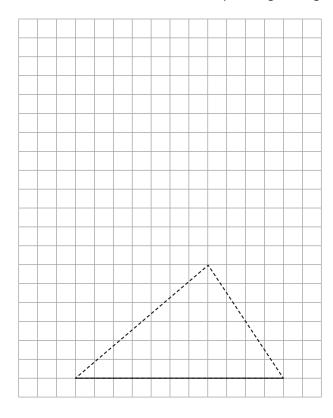

c)


d)


e)

f)

g)



Name:

Oberflächenberechnung Prismen

Aufgabe

Ergänze die angefangene Zeichnung zu einem Prisma. Berechne im Anschluss die Oberfläche. Entnimm die benötigten Größen aus der Zeichnung – beachte, dass das Prisma 6 cm hoch sein soll. Nimm an, dass das Dreieck maßstabsgetreu gezeichnet ist.

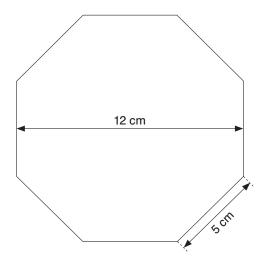
Volumenberechnung Prisma mit rechteckiger Grundfläche

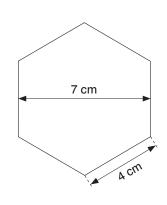
Aufgabe

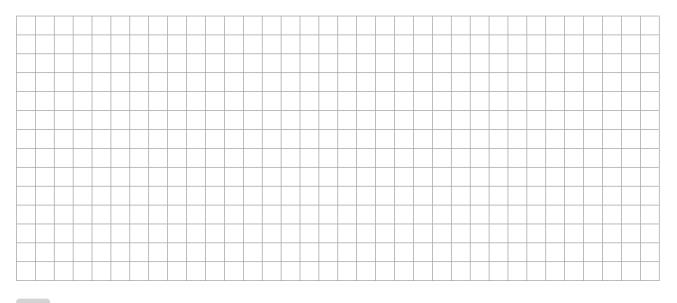
Berechne die fehlenden Größen der Prismen mit rechteckiger Grundfläche. Wandle bei unterschiedlichen Einheiten immer in die *größere* um und runde auf 2 Stellen nach dem Komma. Schneide die Kärtchen der "Schneidevorlage rechteckiges Prisma" aus. Klebe die richtigen Ergebniskästchen auf die entsprechenden Aufgabenkästchen. Wenn du alles richtig zugeordnet hast, erscheint ein passendes Bild.

a = 6,7 cm	a = 4,4 m	b = 6,5 dm
b = 3,4 cm	b = 2,6 m	a = 2.9 dm
h = 4,8 cm	$V = 45,76 \text{ m}^3$	h = 109 cm
11 = 4,0 0111	V = 40,70 III	11 = 103 6111
V =	h =	V =
h = 52 dm	b = 91 mm	b = 1,2 km
a = 0.9 dm	a = 77 mm	a = 0.34 km
b = 12 cm	$V = 84044 \text{ mm}^3$	h = 726 m
	I.	V
V =	h =	V =
$V = 17,94 \text{ m}^3$	h = 12,5 cm	a = 421 mm
a = 8.3 m	b = 13,7 cm	b = 3,8 cm
h = 4,9 m	$V = 685 \text{ cm}^3$	h = 19,2 dm
b =	a =	V =
14 100	a 0.76 are	g 7 am
a = 14 mm	a = 0.76 cm	a = 7 cm
h = 21 mm	b = 1,9 cm	b = 21,6 cm
$V = 8526 \text{ mm}^3$	h = 6,8 cm	$V = 589,69 \text{ cm}^3$
b =	V =	h =
~ -	. –	

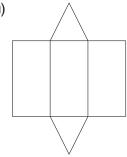
Volumenberechnung Prismen Name:

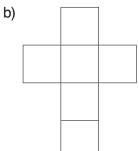

Aufgabe

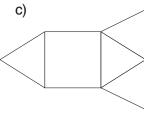

Thomas möchte seinen Eistee aus seinem 8-eckigen Gefä β , welches 32 cm hoch gefüllt ist, auf 6-eckige Gläser verteilen. Diese Gläser kann er 15 cm hoch befüllen.


Wie viele Gläser braucht er? Schätze zuerst. Probiere es an deiner Station aus.

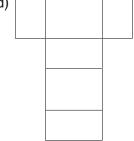
Zeige deine Lösung auch rechnerisch.

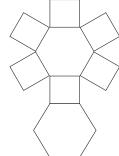


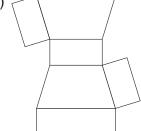

Abwicklungen Prismen

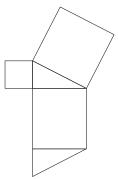

Aufgabe

Welche dieser Abwicklungen ergeben Prismen? Kreise sie ein.


a)

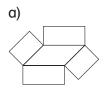

d)

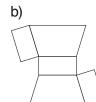

e)

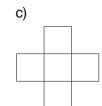

f)

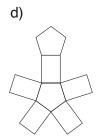
g)

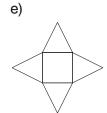
h)

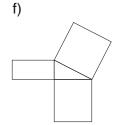

Prismen ergeben die Abwicklungen:


Jrismo


Prisma


Aufgabe 1


Welche dieser Abwicklungen lassen sich zu Prismen zusammenfalten? Kreise sie ein.



Aufgabe 2

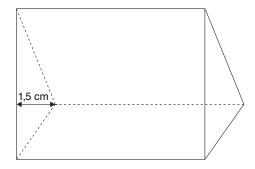
Berechne die fehlenden Größen der quadratischen Prismen. Runde auf 2 Stellen nach dem Komma.

	a)	b)	c)
а	2,8 m		6,1 cm
h	5,9 m	14,2 dm	
V		241 dm ³	102 cm ³
0			

Aufgabe 3

Berechne die fehlenden Größen der rechteckigen Prismen. Runde auf 2 Stellen nach dem Komma.

	a)	b)	c)
а	6,5 dm	3 cm	
b	11 dm	10,4 cm	5 m
h	4,2 dm		7,1 m
V		280,8 cm ³	440,2 m ³
0			

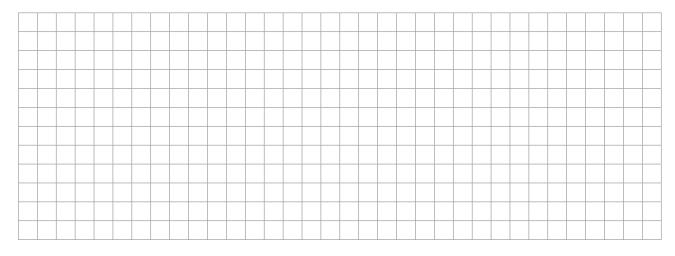

Prisma

Aufgabe 4

Berechne die fehlenden Größen der Dreiecksprismen. Runde auf 2 Stellen nach dem Komma.

	a)	b)	c)
а	4 dm		12,6 cm
h _a	25 dm	10,8 cm	8 cm
h	8,8 dm	15 cm	
V		542,7 dm ³	327,6 cm ³

Aufgabe 5



Entnimm aus der Grafik sämtliche Größen, die du für eine Volumenberechnung benötigst und berechne es.

Aufgabe 6

In eine quadratische Säule passen 55 m³ Wasser. Die Länge der Grundkante a beträgt 85 cm. Wie hoch ist die Säule? Runde auf 2 Stellen nach dem Komma.

